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Abstract 

The Internet of Things (IoT) represents a new paradigm in computing.  The ability to 

connect everyday devices to the Internet has created a global grid of sensors, generating 

data that is used to boost productivity in every industry.  The IoT has even entered homes, 

improving quality of life through smart home automation.  While it provides these benefits, 

the IoT is under attack.  Long characterized by a lack of security, particularly in terms of 

authentication and integrity, the IoT has become a favorite target of hackers.  The last three 

years has witnessed the birth of the botnet, delivering never-before-seen denial of service 

attacks.  Traditional cyber security countermeasures are either inapplicable or ineffective, 

leaving the IoT without adequate protection.  

 IoT devices are often lightly defended and always online, making them an attractive 

target.  However, many device owners do not realize they have been compromised, 

particularly when devices lack a user interface.  This creates a need for an intrusion 

detection system: a way to alert device users to abnormal, potentially-malicious behavior.  

Low computing resources on IoT devices leads many researchers to segregate vulnerable 

devices and set up defenses on the network boundary.  If devices cannot be segregated, this 

approach is ineffective.  A device-centric security solution provides flexibility and be 

applicable to a larger number of scenarios. 

  This thesis describes an anomalous-based intrusion detection system that operates 

directly on IoT devices.  In this approach, an agent on each node compares the node's 

behavior to that of its peers.  If these values are not in alignment, the agent generates an 
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alert.  Communication amongst nodes occurs using a distributed average consensus 

Blockchain.  A new block is generated when the majority of nodes agree on a set of values.  

This becomes the new standard for agents on all nodes to compare against.  Nodes 

continually communicate to reach consensus and generate new blocks, allowing this 

standard to flex and evolve over time.   

To determine the effectiveness of this detection system, an experiment is conducted.  

Three different code samples simulating common IoT malware are deployed against a 

testbed of 12 Raspberry Pi devices, which emulate IoT devices.  Increasing numbers of 

hosts are infected until two-thirds of the network is compromised, and the detection rate is 

recorded for each trial. 

The detection system is effective at detecting malware infections, catching at least one 

malicious node in every trial.  52% of trials catch all infected nodes, achieving perfect 

detection.  The average trial detection percentage is 82%.  There are differences in the 

detection rate for the different malware types, with two above 90% and the third at 60%.  

This suggests that additional tailoring of the system, as well as some changes to the alert 

threshold, could further increase effectiveness. 

This research presents a low-resource, scalable anomaly detection system that is 

effective at detecting malware infections.  This research provides insights into how 

Blockchain technology can be used to improve IoT security.  It also deploys security 

mechanisms directly to IoT devices and, by comparing nodes to their peers, turns the 

multitude of Internet of Things devices into an asset rather than a liability.  
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A BLOCKCHAIN-BASED ANOMALOUS DETECTION SYSTEM FOR 

INTERNET OF THINGS DEVICES   

 

 

 

I.   Introduction 

1.1   Background 

In recent years, the number of Internet connected devices has exploded.  In the early 

2000s, there were more people than devices, whereas today computers far outnumber 

humans.  Estimates predict between 20-50 billion devices by 2020 [1-2].  Much of this 

growth comes from the “Internet of Things” (IoT), a new paradigm where objects, or 

things, are connected and are able to work together to achieve a goal, often without the 

need for human intervention [3].  This growth has benefited various industries by 

improving productivity, yet security has suffered.  Availability is prioritized in many IoT 

devices while authentication [4], integrity, and confidentiality are lacking.  One area of 

concern is intrusion detection.  Botnets infect millions of IoT devices worldwide, yet many 

owners remain unaware of the compromises occurring in their own home [5].  This issue 

is exacerbated by the fact that traditional defense mechanisms, such as anti-virus, are 

infeasible on IoT systems due to computing resource constraints [6].  An additional factor 

is the constant updates which are required by a signature-based detection approach [7].  A 

security solution that provides anomaly-based detection helps solve this problem but still 

requires manual changes when a vendor update occurs.  For these reasons, existing research 

recommends segmenting IoT devices and strengthening defenses on the network boundary 

[8].  Few solutions for intrusion detection exist for the actual IoT devices. 
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1.2   Problem Statement 

IoT does possess several security advantages, mainly due to the large number of 

devices on the network.  In many networks, the same model of device may be used dozens 

or hundreds of times.  By comparing individual devices to their peers, an Intrusion 

Detection System (IDS) to detect and alert on anomalous behavior can be created.  

Blockchain can be used to create such a system that can detect botnet malware.  This system 

is also able to adapt to changing environments (such as a vendor update) without requiring 

manual whitelist changes.   

1.3   Research Goals and Hypothesis 

The research goal is to create a system that utilizes Blockchain to run an IDS directly 

on IoT devices.  This IDS focuses on anomalous system detection by comparing nodes to 

their peers.  The hypothesis states that this solution successfully alerts on IoT botnet 

malware.   

1.4   Approach 

Three code samples simulating common types of IoT botnet malware are deployed 

against a testbed of 12 Raspberry Pi devices.  Each node participates in a Blockchain, which 

holds a software configuration model that is agreed upon by the majority of nodes.  Each 

node checks its currently running software against the model stored on the Blockchain and 

generates an alert if the differences exceed a given threshold.  This experiment observes 

whether the simulation is successful at detecting the malware. 
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1.5   Assumptions/Limitations 

In order to enable proper analysis of the test results, this research applies the following 

assumptions: 

 The code samples are representative of realistic IoT malware. 

 Raspberry Pis are representative of IoT devices. 

 All nodes have identical functionality. 

 Code can be deployed on IoT devices. 

 Major changes to nodes, such as vendor updates, occur at the same time. 

In order to maintain scope and keep the research focused on its goals, this research 

applies the following limitations: 

 Raspberry Pis lack a full IoT application. 

 Symmetric key encryption limits the ability for digital signatures. 

 The Blockchain has the ability for forked branches.  

1.6   Research Contributions 

This research provides a Blockchain IoT security application that can be directly 

deployed to IoT devices.  Current research assumes that the IoT devices either cannot be 

modified or lack the resources to run a Blockchain application.  For these reasons, current 

research focuses on segmenting all IoT devices in a network and strengthening defenses 

on this segment boundary.  For some networks, this separation may not be feasible.  These 

situations require a device-centric approach.   
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Additionally, this thesis utilizes the inherent capabilities of IoT devices: their numbers.  

The Blockchain created in this thesis is strengthened by higher numbers of cooperating 

nodes; this decreases the ability of the malware to avoid detection.   

1.7   Thesis Overview 

This thesis document is organized into six chapters.  Chapter 2 presents a brief 

summary of IoT security issues and voting-based consensus algorithms.  Chapter 3 explains 

the testbed system design as well as the Blockchain itself.  The experiment methodology 

and the results analysis are presented in Chapters 4 and 5 respectively.  Chapter 6 

summarizes this thesis and describes future work.   
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II.   Background and Related Research 

2.1   Chapter Overview 

The purpose of this chapter is to explain background technologies necessary to 

understand Chapters 3 and 4.  Section 2.2 discusses cryptography and explains the 

difference between symmetric and asymmetric technologies.  Section 2.3 describes 

distributed systems and the concept of consensus.  Section 2.4 explains Blockchain and its 

characteristics.  Section 2.5 discusses IoT and the security issues associated with it.   

2.2   Cryptography 

2.2.1   Symmetric vs Asymmetric  

Cryptography generally refers to hiding the meaning of a message [9].  The two most 

common types are symmetric key and asymmetric key cryptography.  In symmetric key 

cryptography, two parties can communicate securely if they know a shared secret key.  

Both parties use this key to encrypt and decrypt the message; any third party who lacks the 

shared secret cannot decipher the message.  However, this key must be exchanged via a 

separate secure channel, which often involves physically transporting the key.  This creates 

an implementation problem, especially if the parties do not possess a secure means of 

transport.  Asymmetric cryptography, often referred to as “public key cryptography”, 

allows two parties to establish a secure connection solely using a public channel (e.g., the 

Internet) [10].  However, asymmetric key cryptography is generally slower to encrypt and 

decrypt messages.  It is also more resource intensive than symmetric cryptography. 
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2.2.2   Public Key Cryptography 

Public key cryptography features two distinct values: an encryption key and a 

decryption key.  These two keys have an inverse relationship.  As the names suggest, the 

former is used for hiding a message and the latter for deciphering it.  Given one of the keys, 

there is no computationally feasible way to find the other.  This allows one of the keys to 

be made public, while the other is kept secret.  The encryption key is referred to as the 

“public” key, and the decryption key as the “private” key.  For example, if Alice wants to 

send an encrypted message to Bob, she uses his public key to encrypt the message, knowing 

that only he is be able to decrypt it.  Figure 1 illustrates this process. 

 

Figure 1.  Public Key Encryption and Decryption Example [9] 

Let 𝒙 represent the original message and 𝒚 represent the encrypted message.  Bob’s 

asymmetric cryptography 𝒌 consists of two keys: 𝒌𝒑𝒖𝒃 is Bob’s public key, and 𝒌𝒑𝒓 is 

Bob’s private key.  In this example, Bob begins by sending his public key to Alice.  The 

center represents the unsecure channel, where anyone may listen to communications.  Alice 

uses an encryption algorithm 𝒆 and Bob’s public key to encrypt the plaintext 𝒙.  This results 

in a cipher text 𝒚 which is sent to Bob.  Using his private key, Bob uses a decryption 

algorithm 𝒅 to retrieve the plaintext 𝒙.  The only data that was sent through the unsecure 
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channel is the public key 𝒌𝒑𝒖𝒃 and the cipher text 𝒚.  Neither of these can be used by an 

outside attacker to compromise the original message 𝒙. 

2.2.3   Digital Signatures 

One application of public key cryptography is digital signatures.  On physical 

documents, participants are asked to sign the form in ink with their unique signature.  This 

verifies the identity of the person and provides non-repudiation: the person cannot deny 

having signed the message.  On the Internet, non-repudiation is provided by digital 

signatures, which build on the inverse relationship between the public and private key [11].  

This process is illustrated in Figure 2.   

 

Figure 2.  Digital Signatures Illustration [9] 

A user named Bob has a message x that he wants to sign.  Bob uses his private key but 

encrypts the message instead of decrypting it.  This encrypted message is known as the 

signature and is denoted by 𝒔 in Figure 2.  He then sends the original message 𝒙 and the 

signature 𝒔 to Alice, who can verify the signature using Bob’s public key 𝒌𝒑𝒖𝒃.  Alice 
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attempts to decrypt the signature with Bob’s public key.  If the decrypted message is the 

same as the original message, then the signature is valid.  Alice can trust that Bob sent this 

message, since only Bob has access to the private key used to sign the message.  If the 

decrypted message and original are different, the signature is not valid.  Either Bob signed 

the wrong message, or the message did not really come from Bob.  In summary, Bob 

“signs” a message with his private key, and Alice “verifies” the message using Bob’s public 

key.  In fact, multiple people can verify the signature, if they have access to the original 

message.   

2.2.4   Hashing 

Public key cryptography allows the creation of digital signatures.  However, these 

signatures are the same length of the original message, which raises some implementation 

issues.  Some asymmetric cryptography functions require breaking up the input into smaller 

chunks.  This results in multiple signatures, one for each fragment.  This creates a security 

risk because while individual fragments are protected, the whole message is not.  If an 

attacker can intercept the transmission, they could re-arrange fragments or remove 

segments.  Additionally, long signatures require overhead.  The computational cost to 

generate them is higher, and more resources are required to send them across the network.  

These issues can be solved by a short signature that could represent messages of any length.  

Hash functions provide the solution.   

This process is shown in Figure 3.  A user wants to sign the message 𝒙, but the message 

is too long.  Rather than breaking up the message and individually signing each segment, 

𝒙 is sent to a hash function 𝒉.  This produces a fixed-length output 𝒔𝒊𝒈, which can then be 

signed using a private key 𝒌𝒑𝒓.  Interestingly, this process also works with multiple 
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messages.  If 𝒙𝟏 through 𝒙𝒏 are different messages or files, a user can generate a single 

hash for the collection. 

 

Figure 3.  Hash Function Illustration [9] 

Hash functions map input data of any length into a fixed length output [9].  Hash 

functions are one-way, or trapdoor, functions.  It is computationally easy to calculate the 

hash in one direction, but computationally infeasible to calculate the opposite direction.  

Even if an attacker knows the hash function and possesses the output, it is difficult to find 

the input.  Likewise, it is infeasible to find collisions, which is where two different inputs 

produce the same hash output.  Overall, the output of a hash function reveals no information 

about the original message.  This functionality is critical to the creation of Blockchains.  

2.3   Distributed Systems 

2.3.1   Overview 

The first computers were large, expensive, and difficult to connect together [12].  The 

arrival of the personal desktop computer changed this, followed by the growth of embedded 

systems and eventually leading to the IoT.  Each transition has made computers smaller 

and cheaper.  This has made it feasible to combine large numbers of computers into a single 

computing system, which we call a distributed system [12].  These systems are comprised 
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of nodes, which can be physical hardware devices or software processes.  These nodes are 

autonomous; they behave independently.  However, nodes work together to achieve a 

common goal.  The nature of this goal is determined by the application.  Common uses 

include distributed databases, web applications, and a distributed ledger.   

When designing a distributed system, there are several important issues to consider.  

Network reliability, clock management, and distribution transparency must be addressed 

in the architecture.  Additionally, the concept of consensus and consistency is critical.  The 

distributed system must maintain a consistent set of data on every node.  The ability to 

handle crashes and malicious nodes leads to several complex approaches.   

2.3.2   Consensus  

Consensus means reaching agreement.  In the context of distributed systems, this refers 

to all nodes in a system agreeing on a set of data.  This is a requirement for many distributed 

system applications, especially for a distributed ledger.  There is a large amount of 

literature on this subject; consensus mechanisms are differentiated by their ability to handle 

crash faults and “Byzantine Faults”.  Crash faults refer to when a node shuts down or 

otherwise loses its ability to communicate and process data.  These crashes may be short 

or long term.  Crash-tolerant algorithms allow the system to continue to reach consensus 

even if nodes crash.  Byzantine faults refer to the Byzantine Generals Problem and 

represent the presence of malicious nodes on the system.  These concepts are explored in 

the following paragraphs.   

One of the most widely used consensus algorithms is Paxos [13].  This is a crash-

tolerant algorithm that seeks to achieve consensus on a value.  That is, from a set of 

proposed values all nodes agree on which value should be chosen.  Paxos uses a leader 
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election system to establish the chosen value.  A system of timeouts ensures that even if 

the leader node shuts off, the algorithm selects a new one on the next iteration.  This system 

is complex yet effective.  However, Paxos is not designed to address nodes acting 

maliciously.   

The Byzantine Generals Problem [14] is an example of how malicious nodes can affect 

consensus.  In this example, a group of generals must determine whether to attack or retreat 

via sending messengers to each other.  All generals must agree on the same outcome, 

otherwise they are destroyed.  However, messengers may be intercepted or stopped, and 

one of the generals may be a traitor.  The ability for the system to reach consensus under 

these circumstances is a complex problem.  Many consensus algorithms refer to “Byzantine 

Faults” as the presence of malicious nodes, and “Byzantine Fault Tolerance” as the ability 

to reach consensus despite the presence of malicious nodes.  

One of the algorithms to address this problem is Practical Byzantine Fault Tolerance 

(PBFT) [15].  This consensus algorithm shows that a distributed system is able to reach 

consensus as long as 2/3 of the nodes in the system are not malicious.  If that threshold is 

crossed, the system breaks down and consensus may not be achieved.  Alternatively, an 

invalid consensus may be pushed by the malicious nodes.  PBFT does have some flaws, 

mostly with the large amount of network traffic required. 

In almost every case, consensus requires nodes to agree upon a value.  However, which 

values are possible depends on the application.  In some cases, like the Byzantine Generals 

Problem, there are only two options, attack or retreat.  Algorithms like Paxos allow for 

several values to be proposed by nodes.  Other applications use distributed average 

consensus.  This method is used when every node has a set of data, and the consensus value 
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should be the average of all nodes.  In these algorithms, the complexity occurs in how the 

nodes communicate and calculate this average value.  

2.4   Blockchain  

2.4.1   Overview  

A new approach to the distributed consensus problem is known as Blockchain.  The 

term Blockchain is often confused with the specific implementation of its most common 

applications.  This section explores the basics of Blockchain, briefly touch on the proof-

of-work consensus protocol popularized by Bitcoin, and establish why Blockchain is still 

useful even with different consensus mechanisms.   

At its core, Blockchain is a decentralized data structure.  The same set of data is 

distributed across several nodes, eliminating central points of failure.  This data is 

organized into blocks, with each block linked to the previous one in an unbroken chain.  

There are two variants of Blockchain.  The first is a transaction-based approach; a known 

state is assumed to have existed before the first block, and every block consists of actions 

affecting that state.  Nodes calculate the current state by applying actions to the previous 

state.  This approach makes individual blocks smaller, but requires that each node keep a 

copy of the full chain.  The second approach involves storing the entire state in each block.  

This approach is less common but allows storing a subset of the chain rather than the entire 

chain.   

Blockchain is characterized by strong integrity.  Each block possesses a field containing 

a hash of the previous block.  This makes it difficult for an attacker to tamper with previous 

blocks.  If any data in a block is changed, its hash changes as well.  All subsequent blocks 
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are now invalid since the previous block fields do not match [16].  This mechanism 

provides a simple yet effective ability to monitor changes to previous blocks.  

2.4.2   Bitcoin 

In late 2008, Satoshi Nakamoto (suspected to be a pseudonym) published the Bitcoin 

whitepaper [16].  In this publication, Nakamoto describes the implementation of a digital 

currency system.  Such ideas had been proposed before, but Bitcoin is unique because it 

does not require a trusted third party.  The utilization of public key infrastructure [17] and 

secure hashing algorithms allows for central functions, like verifying transactions, to be 

performed in a decentralized fashion.  This is achieved by a transaction based Blockchain, 

in which each node applies the transactions in the new block to its current state.  Critically, 

Bitcoin allows each node to verify the validity of a block before executing its transactions.   

Bitcoin’s consensus algorithm is called proof-of-work, and it ensures that the ledger is 

append-only.  Several items are used as the inputs to a hash function including a group of 

transactions, the hash of the previous block, the timestamp, and an unknown number called 

a nonce.  The goal is to find a nonce that makes the resulting hash match a pattern.  For 

example, there exists some number that makes the result hash begin with eight zeroes.  

Special nodes called miners are constantly working on the next block, and broadcast it 

when they find a valid nonce.  The miners are running a brute force algorithm, but other 

nodes can verify it with a single hash function.  Most importantly, if a previous block’s 

value is changed, its hash changes.  This makes every subsequent nonce no longer valid, 

and the corresponding blocks fail verification.  With each successful nonce calculation, the 

Blockchain grows, and nodes reach consensus by accepting the new block as valid.  This 

includes recognizing and executing all transactions found in that block.  Figure 4 illustrates 
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Bitcoin’s block structure.  Each block contains a field containing the hash of the previous 

block.  A change in one of the transactions on the left block changes its hash, resulting in 

the previous hash field of the block on the right being invalid. 

 

Figure 4.  Bitcoin Block Structure [16] 

The key piece of Bitcoin’s consensus is that nodes always work to extend the longest 

Blockchain.  Consider the following example.  Nodes A, B, and C are all working on the 

same ledger of length 10.  Node A finds the nonce first, and broadcasts it to B and C.  Now 

Node A is working off a valid Blockchain of length 11, while B and C are working off 

length 10.  Thus, B and C switch to furthering Node A’s chain, accepting the new block to 

their copy of the ledger.  All three nodes are now in sync.  It is possible for two nodes to 

discover the nonce at the same time, or to discover different nonces that are both valid.  

This leads to a “fork”, where there are two versions of the Blockchain.  These often occur 

due to network latency making it appear that different events occur simultaneously.  When 

a forks occurs, the Blockchain continues to operate.  One of the forks eventually outpaces 

the others, and since nodes are configured to extend the longest chain, all nodes switch to 

that fork.   

Extending the longest chain acts as a security mechanism as well.  Suppose an attacker 

changes a transaction in a previous block.  The new values exist only in the attacker’s copy 

of the ledger; no one else accepts the new data as valid.  In order for other nodes to accept 
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the changes, the attacker must to extend his chain beyond the real one by calculating new 

nonce values.  This requires the attacker to have more computing power than the rest of 

the nodes, which is known as the 51% attack.  On a global Blockchain like Bitcoin, this is 

difficult [16].   

Bitcoin is well suited for its stated goal of a decentralized, electronic cash system.  

However, there are several limitations.  Firstly, the proof-of-work consensus algorithm is 

resource intensive.  The mining process places a heavy workload on the Central Processing 

Unit (CPU).  This algorithm also requires that the entire chain be stored, which at the time 

of this writing is >100 GB.  All applications that use this approach must be aware of the 

storage issue, particularly if the desire is for a public Blockchain (this concept is be 

explained in Section 2.4.3).  Overall, a direct application of Bitcoin’s technology to a 

different industry is inefficient.   

2.4.3   Other Common Blockchains  

Since the creation of Bitcoin, many variants of Blockchain have appeared, supporting 

a myriad of applications.  All of these variants involve combining a set of blocks into a 

chain and linking these blocks using a hash of the previous block.  However, other aspects, 

including proof-of-work, may be absent. 

Ethereum combines Bitcoin with a Turing-complete programming language [18] 

through “smart contracts”.  These are simple programs that live on the Blockchain and 

interact with nodes according to their code.  Smart contracts allow Ethereum to serve as a 

framework for creating more advanced Blockchain applications.  The code for each 

contract is stored as part of the block (often as a special type of transaction).  This inherits 

the strong integrity found in Bitcoin; a smart contract represents an immutable piece of 
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code that is also publicly viewable.  In theory, this allows greater confidence in the code 

that is running.  However, there are several limitations.  Smart contracts have restrictions 

on non-determinism, which limits the ability to write complex code.  Secondly, code is not 

updated; instead a new version is deployed to the Blockchain.  This makes updating and 

adapting to new situations more difficult.   

Ethereum itself began as a proof-of-work Blockchain, with a slightly different 

algorithm that kept many of the same characteristics.  A stated goal is to move to a proof-

of-stake approach, which resembles a voting system where the share of the vote is 

determined by the cryptocurrency owned by the account.  This approach is seen as an 

alternative to proof-of-work that eliminates some of the intensive computations.  Ethereum 

is also one of the first Blockchains to allow private chains.  A private Blockchain is 

restricted to a small set of users, and provides the owners with greater control.  However, 

the integrity of Bitcoin depends on having a large number of nodes.  Private Blockchains 

may end up with weaker security as opposed to public options.  Ethereum does offer a 

global public Blockchain which remains its most popular, but the concept of private and 

permission-controlled Blockchains are used in other applications.   

Hyperledger Fabric [19] is an effort by the Linux Foundation to develop a Blockchain 

framework completely removed from cryptocurrency.  This is a highly modular approach 

built with Docker [20] containers that allows for a high degree of customization.  

Hyperledger Fabric moves away from cryptocurrencies and towards the realm of 

distributed systems, but does maintain some of the key elements of Bitcoin.  This 

Blockchain relies heavily on the use of smart contracts, which originate from peer nodes.  

Hyperledger Fabric requires each transaction to be endorsed by a set of nodes, and all 
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transactions are sent to a central ordering service that arranges the transactions.  Following 

this step, the final transactions are validated before being applied to the local ledger on all 

nodes.  Each of these steps are highly customizable, which represents a major benefit of 

Hyperledger Fabric.  However, there are some limitations.  The requirement for an ordering 

service re-introduces a measure of centralization.  Additionally, endorsing nodes must 

reach an agreement on the resulting value of a smart contract.  For example, if two nodes 

want a smart contract to compare a local file to a value stored on the Blockchain, both 

nodes must agree on the result for the transaction to be executed.  If one node has a 

successful match while the other does not, no transaction is endorsed and the process stops, 

leaving the user with no knowledge of which node failed the check.  Creative use of 

multiple smart contracts with restrictive endorsement policies could mitigate this problem, 

but another limitation is the reliance on containers.  Pilot studies with Hyperledger Fabric 

were unable to get memory usage below 100 MB, which may be too intensive for IoT 

platforms.  

These three examples are the most common implementations of Blockchain.  However, 

each has its limitations and caters to a particular audience.  For specific applications and 

scenarios, a Blockchain framework is the best solution.  However, if the most common 

frameworks fail, a Blockchain can be designed from scratch.   

2.5   Internet of Things  

2.5.1   Overview 

Internet of Things is a term that generally refers to Internet-connected embedded 

devices, especially those that operate with little to no interaction with users.  These devices 
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may be in vehicles, home appliances, medical technology, industrial processes, or any other 

industry.  This reflects a new paradigm in which every device is a sensor.  Figure 5  

illustrates the change in Internet traffic, with sensors uploading data to cloud providers 

[21].  The influx of IoT devices means that more data is being uploaded than downloaded.  

Data is constantly being collected, analyzed, and used as feedback to improve the process.  

This last point is why these devices are often called “smart”.  Often constructed with a 

singular purpose, these devices are much simpler than traditional personal computers.   

 

Figure 5.  Evolution of Data Flows [21]  

There are many models for IoT, usually consisting of three layers [23-24].  The first of 

these is the sensing layer.  These devices sense their environment and collect data.  This 

data is passed to the transport layer, which handles the transportation of data.  Various 

methods [23] are used to deliver data from the sensors to the application layer.  Here, the 

data is stored and used to generate feedback.  This feedback may be completely automated, 
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or could produce reports for a user.  It may send signals back to the sensing devices to 

change their processes or may host the feedback on a cloud server for later consumption.  

Figure 6 shows an illustration of the layers and the security issues at each level.  

 

Figure 6.  Security Architecture of IoT [22] 

 In all its forms, IoT is spreading.  In 2012 the number of Internet connected devices 

exceeded the number of humans for the first time [23].  Experts predict that this trend 

continues, with Cisco predicting 50 billion devices by 2020 [2].  This fast growth, fueled 

by affordable device manufacturing and cloud infrastructure, has led to security risks [23], 

which are be explored in Section 2.5.2.  Countermeasures to mitigate these risks are 

explored in Section 2.5.3.  

2.5.2   Security Risks 

For many IoT device manufacturers, security is an afterthought.  The security standards 

of confidentiality and integrity are often not implemented or fail to adequately protect 
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against threats.  In terms of confidentiality, many users are unaware of the data their devices 

are collecting, which can lead to privacy concerns [6][24].  This risk is heightened since 

many IoT devices use insecure protocols that send data in clear text.  IoT systems have 

little to no checks on device and message integrity, which opens the possibility of an 

attacker intercepting and modifying firmware.  Another issue is authentication.  In many 

cases a default password encompasses the entirety of this security [4].   

The rise of IoT has seen the rise of botnets and the distributed denial of service (DDoS) 

attacks they specialize in [5][25].  Botnets function by infecting large number of devices 

and establishing command and control (C2) channels over these “bot” nodes.  During an 

attack, the botnet owner sends signals to the bots through a series of intermediary nodes.  

These bots attempt to send as much traffic as possible to a target host (often a webserver).  

If the botnet is large enough, the target host is crippled.  This is one of the most common 

uses of a botnet, but there are many other nefarious activities a malicious actor can perform 

with a compromised IoT device.   

One of the most famous botnets is called Mirai.  The original form of this botnet was 

active during late 2016 and early 2017, although variants of it continue to persist.  Mirai is 

notable for setting records for DDoS attacks, at one point reaching 1.3 terabytes per second 

in an attack against Dyn [5].  Mirai was also notable due to its makeup; most of Mirai’s 

bots were IoT devices, which had not been used in such an attack before.  The weak 

authentication, Internet accessible ports, and the fact that these devices were always left on 

made them perfect targets for the malware.  Mirai specifically targeted the Telnet service, 

which many IoT devices utilize.  A 2017 study ran a search for Internet-accessible Telnet 
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ports, and found over 400,000 devices with Telnet open.  The majority of these were IoT 

devices, and 50,000 had no authentication [4].   

2.5.3   Security Countermeasures  

Many IoT devices are resource-constrained.  Compared to a multi-purpose computer 

workstation, these single-purpose devices have few computing resources.  The processor 

and memory are limited, and power consumption must also be monitored.  Many IoT 

systems also feature a limited user interface, and some feature none at all [7].  These factors 

limit the effectiveness of traditional security countermeasures.  For example, anti-virus 

often cannot effectively run on these platforms [7].  When combined with the lack of a user 

interface, it is difficult for system owners and security professionals to defend IoT 

networks.   

To combat these issues, many researchers use non-IoT devices to support the 

Blockchain.  Dorri  [8][28] adds a central device called a “smart home manager”.  This 

device has the resources to run as a full Blockchain node, and interacts with cloud providers 

and other intermediaries, creating a tiered system.  IoT devices are not directly connected 

to the Blockchain, instead they send communications to the smart home manager, who then 

encodes the request into the Blockchain.  The smart home manager acts like a network 

proxy, while also maintaining a secure log of connections.  All IoT traffic must flow 

through this node, and it compares the traffic to rules (also encoded on the Blockchain).  

This research is a promising solution that bypasses many IoT resource concerns.  Similar 

approaches can be seen in other research by Özyılmaz [27] and Novo [28] and the idea is 

also prevalent in non-Blockchain solutions [25].  However, this method has some 

limitations.  This approach is centralized, and all devices could lose availability if the 
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manager node goes down.  Additionally, a device may have multiple communication 

channels but the proxy only observes one of them.  This approach does not provide 

immediate notification that a device has been compromised, although it does limit its 

ability to communicate outside the network.  This could be mitigated by an automated 

script to review connection logs.  Lastly, this approach requires that all IoT devices be 

segmented in a network behind the manager node.  IoT devices may be physically and 

logically separated, and it may not be feasible to combine them together in one place.  This 

could be mitigated by having separate enclaves with a manager at each one, but the cost of 

such a system rapidly increases.  

There are security approaches that focus on devices, but these are limited in their scope.  

Huh [29] utilized the Ethereum Blockchain and smart contracts to integrate several IoT 

devices including a smart thermostat and lightbulb, with all communication occurring over 

the Blockchain.  Benefits of this approach include message integrity and authentication.  

Messages encoded in the Blockchain are immutable, creating a secure log of all 

communication.  Likewise, a device can verify who sent a message, since each is signed 

with the private key of the sender.  However, the cost of calling smart contracts in Ethereum 

presents a challenge.  Ethereum is closely tied with cryptocurrency, and executing smart 

contracts requires a payment for each execution.  On the public Ethereum Blockchain, this 

can lead to rising costs.  On a private Ethereum Blockchain, “free” currency can be given 

to nodes, but the administrator must act to ensure that nodes have enough to execute their 

contracts.  Likewise, some applications may not easily convert to smart contracts.  Lastly, 

the public Ethereum Blockchain is used in Huh’s experiment, which could lead to privacy 

concerns as well as storage issues. 
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One promising proposal is the Collaborative IoT Anomaly Detection (CIoTA) system 

proposed by Golomb [31].  This research creates a lightweight framework for collaborative 

anomaly detection: nodes work together to detect anomalous behavior.  This occurs by 

leveraging a trusted detection model that nodes compare against using self-attestation.  This 

trusted model is constantly updated via group consensus; the model represents the behavior 

of the majority of nodes.  In CIoTA, nodes collaborate through a custom-built Blockchain 

mechanism, which is used to reach consensus on a new trusted model and to share this 

amongst all relevant devices.  

In Golomb’s research, CIoTA is a framework that can support various security 

solutions.  CIoTA defines an agent that runs directly on the device and participates in 

Blockchain with other agents.  How the agent interacts with the system, and what data it 

uses, can be defined by the user.  In Golomb’s research, the featured solution is called 

JumpTracer.  This technology is designed to combat code injection and code re-use attacks, 

which attempt to manipulate control flow of a program with the end goal of executing the 

attacker’s code.  The CIoTA agent utilizes the JumpTracer code to monitor a specific 

application.  The agent tracks the memory jump sequences the application uses, and 

compares these sequences with data from other agents.  By comparing the same application 

running on several machines, JumpTracer hopes to spot anomalies and identify intrusions.   

Golomb makes several assumptions during this research.  This system relies on the 

majority of the network behaving normally (i.e., with unaltered applications).  Thus, 

Golomb assumes that an attacker cannot exploit the majority of the network in a short 

period without detection.  If every node is infected instantly, CIoTA sees all nodes in 

agreement and does not generate an alert.  However, if the attack proceeds slowly, infecting 
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a few nodes at a time, CIoTA can catch it.  Another assumption is related to the agent itself, 

which sits on the IoT devices that may become compromised.  The agent runs with elevated 

permissions, and Golomb assumes that bypassing the agent is unlikely without being 

detected first.  There are several limitations.  CIoTA depends on many identical devices 

with the same functionality.  A separate Blockchain is required for each different device 

model, and even firmware differences between devices could negatively impact the system.  

CIoTA also depends on heavy network traffic.   

There are benefits to CIoTA.  Golomb’s research included an experiment where code 

injection attacks are launched against a testbed of 48 Raspberry Pi devices.  CIoTA is 

successful at detecting this malware, and runs with a low footprint, including memory 

usage of ~60 KB.  Despite its limitations, this research represents a low-resource security 

solution that can run directly on IoT devices.  Additionally, CIoTA acts as a framework; 

all aspects of the system can be customized, and the anomaly detection model itself can be 

switched out entirely.  Instead of tracking memory jump sequences, CIoTA can check 

variables such as memory usage across a program or the entire device, while still utilizing 

the Blockchain framework for communication and consensus.    

2.6   Chapter Summary 

This chapter explains background technologies necessary to understand Chapters 3 and 

4.  Section 2.2 discusses cryptography and explains the difference between symmetric and 

asymmetric technologies.  Section 2.3 describes distributed systems and the concept of 

consensus.  Section 2.4 explains Blockchain and its characteristics.  Section 2.5 discusses 

IoT and the security issues associated with it.    
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III.   System Design 

3.1   Chapter Overview 

This chapter explains the system design, which utilizes the CIoTA Framework 

designed by Golomb but features a custom anomaly detection model designed to combat 

different threats.  Section 3.2 covers the design goals and reasons for modifying Golomb’s 

CIoTA.  Section 3.3 describes the anomaly detection model and its operations, specifically 

how two models are compared against each other.  Section 3.4 describes the agent that runs 

on each device, and how it uses the anomaly detection model to alert on malicious behavior.  

Section 3.5 explains how agents communicate over the Blockchain, and how the system 

reaches consensus.  Section 3.6 outlines the hardware and software specifications of the 

testing equipment, as well as resource requirements for running the Blockchain and agent.  

Section 3.7 explains the malware threats this research confronts, and the code created to 

simulate these threats.  Section 3.8 provides additional data on the anomaly detection 

model, specifically why certain variables are chosen.     

3.2   Design Goals  

The overall goal of this research is to create a system that can detect malicious behavior.  

This system must be able to run directly on IoT devices, and thus requires a low resource 

footprint.  A blacklist approach to detection (similar to anti-virus) is not desired, as constant 

signature updates are currently infeasible in an IoT environment.  For these reasons, this 

research builds on the CIoTA system.  This framework provides an agent that runs directly 

on IoT devices and performs collaborative detections to alert on anomalous activity.  This 

agent is flexible and can adapt to changing criteria without requiring manual updates.  A 
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key difference between Golomb’s work and this research is the trusted model for nodes to 

compare against.  Rather than focus on memory jump sequences, the model is replaced 

with six variables that represent the overall behavior of the device.  Changing the model 

allows for the scale of detection to extend beyond a single application, and combats a wider 

variety of malware threats.  The code for CIoTA is available on Golomb’s Github page, 

and is licensed under the MIT open source license [30].  Several files are modified, but the 

majority of changes occur in the new model code.  This consists of three files, and can be 

viewed in Appendix E. 

3.3   Anomalous Detection System 

With the goal of detecting anomalies, each node’s behavior is compared against a 

trusted source.  In order to quantify a node’s behavior, and allow for operations like 

comparison, the concept of an “anomaly detection model” (hereafter referred to as a 

“model”) is introduced.  This is a structure which defines relevant variables and operations, 

and in this research the model provides a snapshot of how a device is running.   The model 

used in this research focuses on six areas: memory, CPU, network, connections, logins, 

and processes.  Sections 3.3.1 - 3.3.6 describe these areas, and Section 3.3.7 describes how 

models are compared.  In this research, the hosts are Raspberry Pi devices running a Linux 

operating system, which is discussed further in Section 3.6. 

3.3.1   Memory 

Memory refers to the memory usage of the device, specifically how much of the 

system’s memory is utilized.  The command to gather this data is: 

free -m | awk 'NR==2{printf "%.2f\n", $3*100/$2}' 
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The free command shows statistics on memory usage of the host, and a screenshot of 

the command’s output is shown in Figure 7.  This output is fed into the awk command, 

which divides the memory used by the total memory to achieve a percentage.  When the 

free command is called, the -m option specifies to list values in MB.  For the awk command, 

the NR==2 option specifies to operate on the second line.  The print statement tells awk to 

print the result as a floating-point number with two decimal places.  The $3 references the 

third column, which displays the used memory in MB.  The $2 references the second 

column, which represents the total memory in MB.  The used value is multiplied by 100 

and divided by the total value to produce a percentage.  

 

Figure 7.  Memory Screenshot  

 3.3.2   CPU 

CPU refers to the overall processor utilization of the device.  Specifically, processor 

load average is used to compare nodes.  Processor load measures whether the processor is 

over or under-utilized.  This includes recording the time the processor is idle (under-

utilization) and how many processes are waiting for CPU time (over-utilization) [31].  

Numbers lower than 1.0 indicate that the CPU is under-utilized, with lower numbers 

indicating more idle time.  Numbers higher than 1.0 indicate that the CPU is over-utilized 

and that processes are waiting for CPU time.  The command to gather this data is: 

top -bn1 | grep load | awk ‘{printf “%.2f\n”, $(NF-2)}’ 
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 The top command is run with the -b option, which enables re-directing the output, and 

the -n1 option, which specifies to only show a single iteration, or snapshot, before ending.  

A sample of the output from this command is shown in Figure 8.  This output is passed to 

the grep function, which searches for a line with the keyword “load”.  This line is passed 

to the awk command which prints the third value from the right (NF-2) as a floating-point 

number with two decimal places.  In Figure 8, this value is 0.07.  The top command output 

shows the load average over the last minute (0.07), last five minutes (.02), and last 15 

minutes (.00).  For this research, only the last minute is considered. 

 

 

Figure 8.  CPU Capture Screenshot 

3.3.3   Network 

Network refers to the amount of network activity on a device.  This is measured in the 

number of packets received by, and transmitted by, a specific network interface.  For this 

research, the number of received packets and transmitted packets are calculated 

independently, then added together to create a final value.  The command for the number 

of received packets is:  

netstat --interfaces | grep eth0 | awk '{print $3;}' 

 The command for the number of transmitted packets is: 

netstat --interfaces | grep eth0 | awk '{print $7;}' 

 The netstat command with the --interfaces option displays all interfaces and their 

statistics, and its output is shown in Figure 9.  This output is passed to the grep command 



29 

which extracts the line containing the keyword “eth0”.  This line is forwarded to the awk 

command which prints the 3rd (for received packets) or 7th (for transmitted packets) 

columns.  These two columns are labeled “RX-OK” and “TX-OK”, and they show the 

number of normal packets; these are packets that the interface can receive, do not contain 

errors, and are not dropped.  In Figure 9, the number of packets increases between the 

execution of commands, with RX-OK increasing from 25 to 29 and TX-OK increasing 

from 28 to 29.  

 

Figure 9.  Network Capture Screenshot 

3.3.4   Connections 

Connections refers to the number of established connections between a given host and 

other nodes.  Specifically, the number of active transmission control protocol (TCP) 

connections are observed.  The command to pull this data is:  

sudo netstat -ntap | grep EST | wc -l 

 The netstat command is used to view the status of network ports.  The output of this 

command can be seen in Figure 10.  The sudo command is used to ensure that all ports are 

seen.  The -n option does not resolve host names and uses numeric addresses.  The -t option 

focuses on TCP connections, the -a option shows all sockets, and the -p option shows the 

program name and process ID.  The output from netstat is provided to grep, which searches 

for the lines with the keyword “ESTABLISHED”.  The number of lines is counted and 
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produces the final number using the wc command, where the -l option outputs the number 

of lines.  Figure 10 shows an example of this command.   

 

 

Figure 10.  Established Connections Screenshot 

 3.3.5   Logins 

Logins represent the number of successful logins on the device.  Only recent and 

interactive logins are considered.  The command to gather this data is:  

last -s -10min | wc -l 

The last command shows successful logins.  The -s option specifies to look at only 

recent logins, and the -10min option limits the results to only logins in the last ten minutes.  

The output from last is shown in Figure 11 and is passed to the wc command to count the 

number of lines, and thus the number of logins.  However, the last command always 

provides at least two lines of output.  For this reason, the value from this command is 

subtracted by 2 to gain the actual number of recent logins.  In Figure 11, the actual number 

of recent logins is 3 – 2 = 1. 

 

Figure 11.  Login Capture Screenshot  
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 3.3.6   Processes 

Processes refers to the number of processes running on the device.  Specifically, this 

research looks at all processes, regardless of user/owner or how the processes are started.  

The command used to capture this data is:  

ps aux | wc -l 

The ps command displays a list of running processes, and a sample of the output can 

be seen in Figure 12.  The ‘a’ option shows processes from all users.  The ‘u’ option 

provides a column with the process owner, and the ‘x’ option shows processes that are not 

executed from a terminal.  Similarly to logins, the output from the ps command always has 

one line, so the result is subtracted by 1 to get the final process count.  The recorded number 

of processes in Figure 12 is 100.  

 

 

Figure 12.  Placeholder process count  

3.3.7   Model Comparison 

These six variables present a picture of a node’s current state.  However, the anomaly 

detection system requires the ability to compare two nodes and establish their similarity.  

This is accomplished through a comparison function that evaluates each variable 

individually.  It calculates the difference between the two values and assigns a number of 

points representing the degree of similarity.  Higher points represent similarity, and lower 
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points represent differences.  The points for each variable are added to create a final value.  

Examples of this comparison can be seen in Tables 1 and 2. 

Table 1.  Model Comparison Example: Similar Nodes 

  Memory CPU  Bandwidth 

 

Connections 

Recent 

Logins 

Process 

Count  

Node 1 3.25 0.25 10 1 0 90  
Node 2 3.3 0.28 65 1 0 93  

Difference 0.05 0.03 55 0 0 3  
Points 18 18 8 16 16 8 84 

Conclusion Node 1 and Node 2 are similar   
 

Table 2.  Model Comparison Example: Dissimilar Nodes 

  Memory CPU  Bandwidth 

Established 

Connections 

Recent 

Logins 

Process 

Count  

Node 1 3.25 0.25 10 1 0 90  
Node 2 3.4 0.55 300 1 1 95  

Difference 0.15 0.3 290 0 1 5  
Points 9 0 0 16 8 0 33 

Conclusion Node 1 and Node 2 are not similar   

In Tables 1 and 2, two nodes are compared.  For both nodes, the six variables that make 

up the model are listed, and the difference between these fields is calculated.  From the 

difference, points are allocated based off the scoring system shown in Table 3.  These 

points are tallied to produce a compare score, shown in the bottom right of Tables 1 and 2.  

In Table 1, this score is 84, which indicates that these two nodes are operating in a similar 

fashion.  In Table 2, this score is 33, which indicates that these two nodes are operating 

differently.  This research uses a threshold of 55, which testing reveals to represent a 

balance between detecting malicious nodes and limiting false positives.  Scores below 55 

indicate that nodes behave differently, while scores above 55 indicate that nodes are 

similar.  The scores are calculated from a possible 100 points.  Since 100 does not divide 
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evenly into six variables, memory and CPU data is given a slight preference, with a possible 

18 points while the other four variables have a maximum of 16 points.  These values are 

chosen because pilot studies reveal memory and CPU to consistently be strong indicators 

of malicious presence.  Pilot studies also provides initial estimates of the range of potential 

difference values for each variable, and further testing found the values in Table 3 to 

represent the best balance between detections and false positives.  The resulting scoring 

formula is shown in Table 3. 

Table 3.  Model Comparison Scoring Formula  

  
Full 

Points 

Half 

Points  

Zero 

Points  

CPU ≤ 0.1 ≤ 0.25 > 0.25 

Memory ≤ 0.1 ≤ 0.25 > 0.25 

Bandwidth ≤ 50 ≤ 100 > 100 

Established 

Connections 0 1 > 1 

Logins 0 1 > 1 

Process 

Count  ≤ 1 ≤ 3 > 3 

Due to the wide range of values across these six variables, a sliding scale is rejected in 

favor of three possible outputs.  Each of the six model variables can provide full points, 

half points, or zero points.  For memory and CPU this is 18, 9, or 0; for the other variables 

the possible outcomes are 16, 8, and 0.   

The specific values in Table 3 are designed to maximize detection while limiting false 

positives.  They are initially estimated by observing data from the pilot studies, but further 

testing adjusted these values to the current Table 3.  A discrete scale is chosen due to be 

consistent across all variables.  Memory and CPU give full points for a difference less than 

or equal to 0.1, half for a difference greater than 0.1 but less than or equal to 0.25, and zero 
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points for differences greater than 0.25.  Bandwidth gives full points for differences less 

than or equal to 50, half points for differences less than or equal to 100, and zero points for 

differences greater than 100.  For established connections and logins, full points are only 

given for no difference between the values.  A difference of 1 gives half points and anything 

higher results in zero points.  Process count grants full points for differences of zero or one, 

half points for differences of two or three, and zero points for anything higher than three.  

3.4   Agent Operation 

 From a code standpoint, the heart of the CIoTA framework is the agent.  This process 

runs on each IoT device and handles all aspects of detection, to include gathering data 

about its node, sharing this data with others, and receiving data from other nodes.  Each 

agent maintains a local model that represents the current state of the device.  This local 

model is constantly updated by the agent; every second it pulls new data from the device 

and compares it to the previous local model.  If the changes are drastic, an alert is generated.  

However, when the agent initially starts there is no previous model to compare against.  

For this reason, the agent begins in a training phase where it simply accepts new values 

without doing a comparison.  The agent also does not interact with other nodes during this 

time.  The training phase is designed to establish a baseline of normal activity.  An attacker 

could infect a node during the training phase, but when the nodes begin to communicate 

this infection is discovered [32].  In this research, the training phase lasts 20 seconds.  Since 

launching the agent requires interacting with the devices, this period allows for any artifacts 

from that interaction to subside.  
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 The flowchart in Figure 13 describes the agent’s operations for updating its local 

model.  There are two starting positions for this process.  When the agent first starts 

running, the flowchart begins at the black circle on the bottom right side of the diagram.  

The agent pulls new data from its node (referred to as “consuming” new data).  This is 

accomplished using the commands discussed in Section 3.3, and this diagram assumes that 

the agent has created an empty local model if one does not already exist.  During the 

training phase the new data is accepted, and the local model is replaced with the new data.  

Outside the training phase, the new data is compared to the local model.  If the two are 

similar (above the 55 compare score threshold), it passes comparison and updates the local 

model.  However, if the comparison fails, an alert is generated to indicate that something 

is amiss.  Regardless of the comparison result, the model is updated with the new data.  

This ensures that the local model represents the latest state of the node.  After updating the 

local model, the agent sleeps for one second before gathering new data.  
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Figure 13.  Agent Gathering Data Flowchart 

Blocks are discussed in depth in Section 3.4, but they can influence how the agent 

handles its local model.  When the agent accepts a new block, it interrupts the gathering 

data process.  This can be seen at the black circle at the top right of Figure 13.  The values 

from a new block are directly applied to the local model.  The next time the agent polls 

data from its node, it compares against the block’s model.  The model from the new block 

represents the consensus of the network; the majority of nodes agree that these values look 

correct.  In essence, the agent now compares its node against the trusted model, and 

generates an alert if behavior differs.   

Tables 4 and 5 provide further examples of this process.  These tables show a snapshot 

of logs from a node and illustrate how local models change.  
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Table 4.  Local Model Example: Non-infected Node 

Line Memory CPU Bandwidth 
Established 
Connections Logins 

Process 
Count 

Compare 
Score  

1 3.13 0.02 3 1 0 103 100 

2 3.24 0.02 2 1 0 103 91 

3 3.24 0.02 3 1 0 103 100 

4 3.24 0.01 3 1 0 103 100 

5 3.24 0.01 2 1 0 103 100 

6 3.13 0.01 3 1 0 103 91 

7 3.13 0.05 2 1 0 101 *Block 

8 3.24 0.01 603 1 0 103 67 

9 3.24 0.01 2 1 0 103 84 

 The line column in Tables 4 and 5 is used for reference, the model variables are the 

central columns, and the compare score shows the comparison between each line and its 

predecessor (there is more activity before and after this sample).  Table 4 shows the 

progression for a normal node.  The agent is collecting new data every second and 

performing a comparison.  The model on line 2 is compared to line 1, with a change of 0.11 

in the memory column.  This results in half points for memory, and full points for 

everything else resulting in a score of 91.  A similar result occurs in the comparison 

between lines 5 and 6.  Line 7 represents the new data from an accepted block, and the data 

from the node on line 8 is compared against it.  Relative to the rest of the network, this 

node exhibits a higher process count.  Line 8 does show a higher bandwidth score due to 

Blockchain communication, but even with differences in these areas the node passes the 

comparison test.  This shows how small changes are allowed by the model, and slight 

differences do not generate alerts.  
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Table 5.  Local Model Example: Infected Node  

Line Memory CPU Bandwidth 
Established 
Connections Logins 

Process 
Count 

Compare 
Score  

1 3.24 0.53 2 1 1 97 100 

2 3.24 0.65 3 1 1 97 91 

3 3.24 0.65 3 1 1 97 100 

4 3.24 0.65 2 1 1 97 100 

5 3.24 0.68 3 1 1 97 100 

6 3.24 0.68 2 1 1 97 100 

7 3.13 0.12 2 1 0 96 *Block 

8 3.24 0.68 1141 1 1 97 49 

9 3.24 0.7 20 1 1 97 84 

 In contrast, Table 5 shows the model progression of a node infected with malware.  In 

particular, the CPU and recent logins variables are heightened.  In line 7 a new block is 

accepted.  The data from this node in line 8 is compared to the block model in line 7.  This 

comparison sees stark differences in CPU and bandwidth, giving zero points.  Differences 

in memory and logins give half points, resulting in a total of 49 points.  Since this is under 

the threshold, the agent on this node generates an alert.  As more blocks are created, alerts 

continue to be generated since this node behaves differently to the majority of the network.  

This alert is sent via TCP to an alert server.   

3.5   Blockchain Operation  

Agents maintain local models and make comparisons to generate alerts, but this activity 

is local to the node.  For the system to accurately detect anomalies, agents must share data 

with each other.  A simplified view of this process is shown in Figure 14. 
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Figure 14.   Agents Sharing Models (Simplified) 

 In Figure 14 A, B, and C represent nodes.  Node A sends its model to Node B, who 

does a comparison between the received model and Node B’s local model.  If the two 

models are similar, Node B considers itself and Node A to be in sync.  Node B then sends 

both records to Node C, who also performs a comparison.  If this comparison is successful, 

Node C sends all three similar records.  In this way, a “block” of multiple similar models 

is spread throughout the network until most nodes have a model in the block.  At this point 

the block represents the majority of the network and is considered complete.  Agents accept 

this completed block and replace their local model with a combined model from the block, 

performing comparisons as discussed in Section 3.4.   

 In order to share models between nodes, a model’s data is stored into a structure 

called a “record”.  Each record consists of a model with some metadata which shows where 

the model came from, and the record structure can be seen in Figure 15.  The source is the 

node that owns the model.  In Golomb’s CIoTA examples, and in this research, the source 

is the Internet Protocol (IP) address of the node.  The seed is a value that describes the 

block that includes this record.  Each agent encrypts its record with a pre-shared key before 

sending it.  The encryption mechanism is the Advanced Encryption Standard (AES), a type 

of symmetric encryption.  Specifically, AES-256 encryption is used.  This is chosen for 

resource considerations, as asymmetric encryption increases computing requirements.   



40 

 

Figure 15.  Record Structure  

The simplified example shows that nodes send records to each other for comparison.  

This occurs through the use of blocks, which hold multiple records.  Each node begins the 

consensus process by creating a block containing only their record.  Blocks can either be 

completed or partial.  Completed blocks have a pre-determined number of records, usually 

set to represent a majority of nodes.  If the block contains fewer records then it is referred 

to as a partial block.  The block structure is shown in Figure 16.  

 

Figure 16.  Block Structure 

In Figure 16, the block ID is the block number and starts at zero.  The timestamp is 

when the block is created, and is described in epoch time.  The next field is the hash of the 

previous block.  For the first block, this field is empty.  The seed is an identifier for the 

node that created the block.  Similarly to the source field of records, the IP address of the 

originating node is used as the seed.   After the seed size and seed variables is a field 

containing the number of records.  The records are then included in the Block Data portion 

consecutively.   

The consensus mechanism is a variant of distributed average consensus.  Each node 

sends its partial block, containing its local model, to all other nodes via multicast packets.  

This is a concept called flooding [12].  In traditional flooding, each node maintains a table 
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with the status of all other nodes.  In this research, each node checks the similarity between 

the received model and its local model.  If the two are similar, the receiving agent replaces 

its own partial block with the new block.  It then appends its own record to the end of the 

partial block, thus growing the block.  If the models are not similar, nothing changes for 

the receiver node.  It simply drops the received model.  The replacement of blocks can be 

easily tracked by the seed value, which determines where a block originated from.  

The next example provides clarity on how partial blocks are formed.  This example 

includes three nodes (A, B, and C), where two agreeing nodes represent a majority.  Each 

node completes the training phase and currently maintains a partial block.  The partial 

blocks for each node are shown in Figure 17.  Since there is no previous block, the previous 

hash field is empty.  The records are shown below the block metadata for each node, and 

contain the current models for each node.  In this example, all nodes are behaving similarly 

and there are not discrepancies in model values.  The seed describes which node this partial 

block originated from.  Since no data has been shared, the seed is identical to the source 

for each node. 
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Figure 17.  Consensus Example: Starting Partial Blocks  
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Node A begins the process by sending its partial block to Node B.  The specifics of this 

transfer are illustrated in Figure 18.  At the top of Figure 18 is the partial block that Node 

A sends to Node B.  Node B begins by checking to see if Node A sent a longer chain of 

blocks.  Since neither node has any completed blocks, they are even.  Node B now evaluates 

the number of records in the partial block.  Both have one record, but Node B is not 

included in the partial sent from A.  If Node B adds its record, the sent partial has two 

records, greater than Node B's current partial block.  For this reason, Node B considers the 

received partial block for acceptance. 

In Figure 18, Node B takes the model in the received partial block and compares it to 

Node B's local model, in order to establish whether Node A and B are similar.  The 

comparison is successful, and Node B concludes that these two nodes are in agreement.  

Node B now clears its partial block and replaces it with the received one from Node A.  

Node B then adds its record to the partial block, which is seen at the bottom of Figure 18.  

The seed for the block and the records show that this partial block originates from Node A.  

However, there are now records from two nodes, as seen by the source field.   
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Figure 18.  Consensus Example: Node A Sends Partial Block to Node B 
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Node A also sends its partial block to Node C, which is not illustrated but occurs in a 

similar fashion to Figure 18.  Node C accepts the new partial block, giving the state in line 

2 of Table 6.  This table shows information about the partial blocks on each node, 

specifically the number of records and the source of those records.  Since this example only 

has three nodes, two nodes in agreement represents the majority of the network.  However, 

Nodes B and C have different sets of records, with slightly different values.  To combat 

this problem, Golomb's CIoTA configures agents to only accept new blocks when it 

receives a completed partial block, not when it creates one by adding its own record.  Thus, 

this example waits until line 3 in Table 6 to finalize the first blocks, when Node B sends 

its partial block to Nodes A and C.  This takes place similarly to Figure 18, but with one 

exception.  Since there are two records in the sent partial block, the receiving node averages 

these records before comparing to its local model.  For each variable in the model, the 

values between all records are averaged.  

Table 6.  Consensus Example: Partial Block Snapshot 

Line Action 
Partial Blocks: # Records-Sources 

A B C 

1 Original  1-A 1-B 1-C 

2 A sends to B,C 1-A 2-A,B 2-A,C 

3 B sends to A,C 2-A,B* 2-A,B 2-A,B* 

4 C sends to A,C 2-A,B* 2-A,B* 2-A,B* 

* denotes accepted block    

At the end of line 3, Node A and C accept the completed block, denoted by an asterisk.  

Node C sends its completed block to Node B in line 4, at which point it accepts the block.  

Now each node creates a new partial block and restarts the process.   

This example features each node taking actions in turn, but nodes are actually 

configured with a share interval (how often the agent shares its partial block) and a receive 
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interval (when the agent is ready to receive new blocks).  Forks may occur due to network 

delay, dropped packets, or timing differences between nodes.  A fork is where there are 

multiple valid blocks, and nodes accept different combinations.  The next example defines 

how forks occur, and how they are handled.   

If the actions in line 3 and 4 of Table 6 take place simultaneously, Node A and C may 

end with a different block (2-A,B) than Node B (2-A,C).  This can be seen in Table 7.  Both 

of these blocks are valid, and are similar to each other in values.  While forks are not ideal, 

they typically resolve themselves in the next block.  In Table 7, both forks originate from 

the same place: Node A’s original partial block.  This can be verified by the seed value of 

both blocks in the fork.  In the next iteration, each node creates a new partial block and 

builds it, but now they send both the partial and the previously completed block to each 

other.  Thus, if Node A completes the partial first and sends it to Node B, Node B accepts 

Node A’s entire chain.  Node B now recognizes the same chain of blocks as Node A and 

C.  In this way, the status of the next block determines which fork “wins” and continues to 

grow.  As the Blockchain runs, the number of blocks that can be shared is limited to 20 to 

reduce resource consumption.  

Table 7.  Consensus Example: Forked Partial Block Snapshot 

Line Action 
Partial Blocks: # Records-Sources 

A B C 

1 Original  1-A 1-B 1-C 

2 A sends to B,C 1-A 2-A,B 2-A,C 

3 
B sends to A,C 

C sends to A,C 
2-A,B* 2-A,C* 2-A,B* 

* denotes accepted block    
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Figure 19 displays the actions of the agent upon receiving blocks from another node.  

This flowchart begins at the black circle on the top of the diagram, symbolizing when the 

agent starts running.  The agent waits to receive multicast messages from other nodes.  

When a message is received, it checks the format to determine that the message is formatted 

correctly and is actually a set of blocks.  Then the agent evaluates whether the received 

Blockchain is longer than its own, looking for completed blocks.  If the received 

Blockchain is longer outright, the agent replaces its own Blockchain, decrypts the records, 

averages the records to get a single model, and replaces its local model with the combined 

one.  Otherwise, the agent checks the received partial block to determine whether it has 

more records.  If the agent considers accepting the partial block, it decrypts the records and 

averages them.  The agent then performs a comparison against its own local model.  If the 

comparison is successful, the agent clears its own partial block and accepts the new one, 

adding its own record to grow the partial block.   
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Figure 19.  Agent Receiving Blocks Flowchart  

One area that has not been discussed is malicious activity.  If a single node is infected 

with malware, its model is different than the other models.  Other nodes reject the partial 

block from this malicious node, and thus the blocks grow exclusively from non-infected 

models.  The agent still receives and accepts completed blocks, at which point it performs 

a comparison and generates an alert.  If multiple nodes are infected, the blocks may be 

influenced by malicious behavior.  This degrades the detection mechanism, although alerts 

are still generated when the infection starts.  The experiment discussed in Chapter 4 

explores the effectiveness of CIoTA under these circumstances.  

There are benefits of using this approach.  One benefit of Blockchain is integrity of 

data.  This design retains that benefit, due mostly to the distributed nature of the system.  

Each agent validates the blocks, making sure that it is formatted correctly, has the proper 

number of records, and points to a previous block with the correct hash.  The most 

important block is always the latest one, as this updates the local models on all nodes.  
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Attempting to change the values of this block is fruitless, as nodes have already updated 

their local models; this also means that alerts have already been generated.  In order to stop 

the generation of alerts from an infected host, that node must to prevent the reception of 

the latest block.  This block is rejected only if it is out of order, which requires the attacker 

to outpace the main network.  This is unlikely unless the attacker can corrupt two-thirds of 

nodes on the network.   

A limitation is that the lack of asymmetric encryption prevents the use of digital 

signatures.  Authenticity comes from the record being encrypted with the pre-shared key, 

not from an irrefutable signature.  This means that if an attacker can compromise a node 

and manipulate the agent running on that node, it could potentially generate fake records 

from other nodes.  This impact is mitigated because such manipulation requires re-

compiling the binaries.  By restricting the source files needed for building executables and 

only distributing the binaries to nodes, an attacker cannot effectively re-compile the agent.  

Reverse-engineering is a possibility, but requires more effort from the attacker.  If the 

attacker does not manipulate the agent, it is unable to encrypt records with the correct key, 

which limits the ability to send false records to other nodes. 

Another limitation is the centralization of alerts.  Each agent is configured to send its 

alerts to a specific alert server, so they can be aggregated.  This introduces a measure of 

centralization into the system.  This can be mitigated through several methods.  The agent 

generates a log of activity, which is stored locally.  Since this log includes data from the 

alert, agents could be polled individually to check for any alert logs.  As another method, 

different functionality could be included in the alert code.  In addition to sending an alert 
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to the server, nodes could be configured to send an email or a broadcast.  Further research 

could implement one of these methods to increase decentralization of alerts. 

3.6   Deployment Architecture  

 The main hardware used in this research is the Raspberry Pi Model 3B (hereafter 

referred to as “Pi”).  Twelve of these devices comprise the test network and are stored in 

stacks of six.  Each device has 1 GB of RAM and a Quad Core 1.2 GHz processor [33].  

Each Pi is running the Raspbian Stretch operating system and is equipped with both Wi-Fi 

and 100 Base Ethernet connectivity.  The Wi-Fi can connect to 802.11 b/g/n access points.   

 The Pi is used in this research to mimic IoT devices.  When compared to desktop 

computers, the Pi provides a resource-limited environment that reflects IoT challenges; 

there are many IT security solutions that the Pi simply cannot run.  In essence, the Pi has 

more computing resources than the average IoT device but less than standard desktop 

computers.  As a result, the Pi has adequate resources to test IoT related countermeasures 

but still constrains the user to employ low-resource options.  This balance is the main 

reason for using the Pi.  Secondary reasons include the desire for a physical device (few 

IoT devices are virtual) and the ability to interact through multiple methods (wireless and 

wired), which is useful for running experiments.  

The Ethernet port (eth0) on each Pi is connected to one of two unmanaged switches.  

This Ethernet connection is for the test network, which is bounded by the 192.168.0.0/24 

subnet.  The Pis are placed at addresses 192.168.0.151-162, reflecting the Pi’s number + 

150.  For example, Pi 1 has its eth0 interface configured to a static IP address of 

192.168.0.151.  Additional test servers are positioned at addresses 192.168.0.163-164.  Pi 
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13 is the attack server that is used to launch the malware simulations.  Pi 14 is the alert 

server which monitors the alerts from each individual Pi.  These 14 devices are connected 

via two eight-port switches, which can be seen on the right side of Figure 20. 

 

Figure 20.  Logical Diagram of Test Equipment 

Wi-Fi is used for experiment control.  This allows communication with the test devices 

without affecting the data being collected.  For each Pi, the wlan0 interface is connected to 

an 802.11ac router.  Data sent over this interface does not affect the eth0 interface, which 

is where all bandwidth measurements take place.  A desktop computer running an Ubuntu 

16.04 Virtual Machine is the test control server.  This server is equipped with scripts to 

start agents on all test nodes, and also controls the attack and alert servers.  For most 

commands, the parallel secure shell (PSSH) command is used to simultaneously send 
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commands to all 12 Raspberry Pis.  This is a non-interactive login shell, which is not shown 

by the “last” command.   

The Raspbian Stretch operating system (OS) provided most of the software tools 

needed for this experiment.  However, some additional pieces of software were installed.  

These included a telnet server, the matrixssl library [34] for encryption functions, and the 

spdlog [35] library for logging.  The matrixssl and spdlog files were only required to 

compile the agent, they do not need to be present on deployment machines.  Appendix B 

provides a detailed explanation of the setup procedures for each Pi.   

Figure 21 shows the first stack with Pis 1-6.  One of the switches is shown at the bottom 

of the image, and Pi 14 is sitting atop the switch.  These 7 devices are connected to the 

switch via Ethernet taking up 7 of the 8 ports.  The last port is used to connect the two 

switches together.  Figure 22 shows the second stack of Pis 7-12 on the bottom left side of 

the image.  Pi 13 sits atop the second switch in the center of the image, and the first switch 

(seen in Figure 21) can also be seen at the top left of the image.  The second stack is 

connected to six Kill-A-Watt power meters, which monitor current data during execution.  

Figure 13 shows both Pi stacks and the switches.  
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Figure 21.  Stack Containing Pis 1-6 
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Figure 22.  Stack Containing Pis 7-12 
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Figure 23.  Pi Stacks and Switches 

There are some metrics that were not included in the main experiment but are valuable 

for gauging the relevance of this approach to IoT devices.  The main area of interest was 

power consumption while running the Blockchain.  To collect this data, six Kill-A-Watt 
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P3 power meters were utilized.  These can be seen in Figure 24.  Since the Kill-A-Watt 

meters do not save their measurements, a laptop computer was set up to video record the 

output screens of the Kill-A-Watt meters during trials.  A watch was synced with the test 

computer and then placed in front of the meters as a reference.  At different times, each Pi 

stack is plugged into the power meters, allowing for data from all 12 of the main test Pis.  

This is why Pis 1-12 are placed into stacks: it allows for easy movement and plugging into 

the power meters.  

 

Figure 24.  Kill-A-Watt Power Meters 
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Section 3.8 discusses pilot studies, which are used to create the model.  These pilot 

studies also provide baseline statistics for the Pi’s normal operation.  After pilot studies are 

finished and the model is completed, Pis 1-12 are configured to run the Blockchain agent 

for 10 minutes.  Logs from the agent are compared to the baseline data from the pilot 

studies, giving estimates on the resource consumption of running the Blockchain.  Memory, 

processor, and power consumption are the three main areas of concern for IoT security 

applications.  

Nodes running the Blockchain average a memory usage percentage of 3.26%.  This 

reflects the usage for the whole system but can be compared to the values collected during 

the baseline trials, which had an average of 3.05%.  This shows that the Blockchain 

increases the memory usage on average of 0.2%.  For the Pis that comprise this testbed, 

that equates to ~1.8 MB of memory.  This value is highly dependent on the anomaly 

detection model that is used; focused research could reduce this value by using less 

variables and more efficient code. 

Nodes running the Blockchain average a CPU load of 0.25.  This is a minor difference 

from the 0.24 seen in the baseline trials.  For the Raspberry Pi 3 Model B, CPU is not 

affected by running the Blockchain.   

Nodes running the Blockchain average a current usage of 0.033 A.  This is similar to 

the power usage during the baseline trials, which was 0.032 A.  The tools in this research 

are limited in precision and cannot determine if the Blockchain forces devices to draw 

additional power.  Further research and tools with greater precision are required to identify 

differences. 
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3.7   Malware Simulation 

For this experiment, three types of common IoT malware are simulated.  These include 

crypto-currency miners, DDoS bots, and spyware.  All of these examples are simulated as 

being run from an IoT botnet, which means there are several similarities between them.  

Since many IoT devices lack strong authentication, default passwords are typically the first 

intrusion vector.  All three malware simulations utilize a telnet login as the first step.  Upon 

successfully logging into a device, the malware reaches out to a staging server to download 

more advanced software.  In this research, this step involves connecting to the attack server 

on Pi 13 and downloading a .tar file using a wget command.  Once downloaded, the 

malware extracts the files from the .tar archive and then runs its desired executable.  Figures 

41-43 in Appendix D show the specific telnet commands. 

The first malware simulation is based off  cryptocurrency mining [36].  This represents 

an actor who seeks financial profit by mining crypto-currencies such as Bitcoin.  The 

attacker seeks to establish a large botnet and divide the search space amongst these nodes.  

Each bot is assigned a set of nonces to check for a valid hash.  By using a divide and 

conquer method, the attacker hopes to find a valid hash quickly and thus profit.  The bot 

starts at a certain nonce and calculates the hash, before checking to see if it matches the 

given pattern.  If successful, the bot sends the correct nonce back to its C2 server.   

In this experiment, the pattern is a Secure Hash Algorithm (SHA)-256 hash starting 

with four zeroes.  The bot starts with the string “hello” and appends a number to the end, 

before checking to see if this string’s hash matches the pattern.  If the first nonce does not 

result in a valid hash, the nonce is incremented and the process begins again.  Once a valid 

nonce is found, a connection is opened with a remote server and the valid nonce is 
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transmitted.  For this experiment, the program repeats this process four times, which 

ensures the program does not complete until after ~ 15 minutes.  Figure 35 in Appendix A 

shows the code for this simulation.  

The second malware simulation represents perhaps the most common type of botnet 

malware: DDoS.  This particular malware simulation is based off the Mirai botnet malware 

[5].  Mirai establishes a presence through exploiting default logins.  Upon gaining access 

to a system, this malware downloads and runs an installer executable, but then deletes this 

executable so that it lives only in memory.  It maintains a connection with its C2 server to 

await instructions for DDoS attacks.  It also watches the system for malware competitors, 

and kills any service attempting to use port 23.   

The code to simulate this malware maintains a connection to the C2 server using netcat.  

It attempts to keep this connection open for the duration of the trial.  This simulation also 

spawns a watchdog process to monitor the open ports on the device.  It performs a 

command to check the status of the listening ports every second.  However, this simulation 

does not kill any processes bound to these ports and does not delete its own executable.  

Figure 36 in Appendix A shows the specific code. 

The third malware sample is spyware [37].  This type of malware is focused on a 

specific subset of IoT devices, mainly cameras and audio devices.  This malware bears a 

resemblance to key loggers found on desktop computers.  Typical behavior includes storing 

sensitive data (keystrokes on desktop computers, audio and video recordings on IoT 

devices) in a log file and periodically sending this data to an attacker.  There are some 

variations: the malware may directly stream the data to the attacker or could save and email 

the data instead of a direct transfer.  
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In the simulation, the program writes the word “hello” to a file every second.  After 60 

seconds of writing, the file is sent to the attacker.  This transfer occurs over a netcat 

connection to the attack server, but this connection is not constantly maintained like it is in 

simulation 2.  This process is repeated five times, filling the trial period.  The code is shown 

in Figure 37 in Appendix A. 

3.8   Pilot Studies 

This research aims to create a model that can detect the threats described in Section 

3.7.  In order to meet this goal, pilot studies are conducted.  These studies test variables to 

identify indicators of malicious activity.  Each of the variables discussed in Section 3.3 is 

investigated, in addition to disk space usage.  Data is collected from Pis infected with 

malware simulations from Section 3.7.  This is compared to data collected from Pis running 

normally to evaluate whether the two datasets are different.  If malware affects the data for 

a specific variable, then that variable is included in the model.  A brief description of the 

pilot studies is included in this section, and detailed steps are in Appendix C and D. 

Pilot studies feature Pis 1-12 running with no additional applications besides the telnet 

server.  The matrixssl and spdlog libraries are installed but not utilized, and no Blockchain 

agents are running.  A script called metrics.sh is deployed to each Raspberry Pi.  This script 

is shown in Figure 40 of Appendix C, and it calls the commands from Section 3.3 and saves 

the output to a text file.  This script also includes a variable that is not chosen for the model: 

disk space.  This measures the usage of disk space on the device, and the command is: 

df -h | awk ‘$NF==”/”{printf “%s”, $5}’ 
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The df command shows disk space statistics, and example output is shown in Figure 

25.  The -h option adjusts the output to make it human-readable, and the output is re-

directed to the awk command.  The $NF option looks at the last column in every line to see 

if it matches the keyword “/”, which represents the main filesystem.  Column 5 (from the 

$5 option) of that line is printed as a string.  In Figure 25, this returns the usage percentage 

of the main filesystem.  On each Pi, the value remains at 35% even with the malware 

running.  This indicates that the malware simulations do not affect disk space or that the 

command to capture this data is not accurate enough.  For these reasons, disk space is not 

included in the final model. 

 

  

Figure 25.  Disk Space Capture Screenshot 

The setup of the pilot studies is further explained in Appendix C, but follows these 

steps: 

 Any remnants from previous pilot studies are removed on Pis 1-12 

 Pis 1-12 are rebooted 

 Pi 13 (attack server) prepares web server and listening port 

 Attack commands are staged on Pi 13 (attack server) 

Remnants from previous pilot studies can include the log files from the metrics.sh script 

and artifacts from the malware simulations.  Reboots are administered from the test control 

server using non-interactive logins, which do not affect the logins variable.  The attack 

server ensures that the .tar file containing the malware simulation code can be accessed via 
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HTTP, and that a listener is set up to receive data using the netcat command.  The test 

control server communicates with the attack server via secure shell (SSH) commands, and 

stages attack commands in terminal windows before beginning the trial.  This is illustrated 

in Figure 26.  

 

Figure 26.  Malware Simulation Attack Path 

The execution of the pilot studies is further explained in Appendix D, but follow these 

steps: 

 Start metrics.sh script on Pis 1-12  

 Allow Pis 1-12 to run normally for 300 seconds (five minutes) 

 Launch malware attack  

 Allow Pis 1-12 to run with malware infection for 300 seconds (five minutes) 

 Kill metrics.sh script on Pis 1-12 

 Pull metrics.sh output file back to test control server to analyze 

The test control server starts the metrics.sh script on Pis 1-12 simultaneously.  All Pis 

and the test control server use Network Time Protocol.  The malware attack is run by 

executing the staged commands from the test control server (via the attack server).  The 

metrics script is stopped from the test control server.  The logs are transferred to the test 

control server manually via the secure copy (SCP) command.  Three iterations are run for 
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each malware simulation, resulting in nine total executions.  This is done to prevent outliers 

in a single execution from affecting the results.   

The pilot studies produce two sets of data: a base (i.e., normal) set and a malware set.  

A common method to compare two sets of data is a t-test.  This test compares the means 

of two datasets to determine if there is a statistically significant difference [38].    In a t-

test, the null hypothesis states that there is no difference between the means.  The t-test 

produces a p-value, which is a measure of probability.  For example, a p-value of 0.01 

means that, if the null hypothesis is true, the likelihood of these results is 1 out of 100 [38].  

This is unlikely and indicates that the samples are probably different.  Thus, the null 

hypothesis is rejected.  In this research, the null hypothesis is rejected if the p-value is less 

than 0.05, which represents 95% confidence.  

There are requirements to use a t-test, mainly that both sets of data are normally 

distributed.  Although large amount of data-points usually indicate normality, some of the 

variables in the pilot studies are limited to only a few possible values.  A statistical test 

called the Anderson-Darling test [39] is used to confirm whether each of the datasets is 

normal.  In this test, the null hypothesis is that the data follows the normal distribution.  A 

p-value is calculated, and the null hypothesis is rejected if the p-value is less than 0.05.  For 

malware simulation 1, the base data from all three tests is combined into a single dataset.  

The malware data from all three tests is also combined into a single dataset.  This process 

is repeated for malware simulations 2 and 3, resulting in six datasets.  The Anderson-

Darling test is performed on these datasets.  For each one, the null hypothesis is rejected: 

the data is not normal.  This means that an alternative to the t-test must be used. 
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An alternative to the t-test is the Mann-Whitney U test [40] (also referred to as the 

Wilcoxon Rank-Sum Test) .  This test works on data sets that lack a normal distribution.  

It compares two datasets, with a null hypothesis that both came from the same population.  

A p-value is produced, and the null hypothesis is rejected if the p-value is less than 0.05.  

The Mann-Whitney U test is performed to test the null hypothesis that the base and 

malware datasets are equal for each malware simulation.  The resulting p-values are shown 

in Table 8, where the “Pilot 1” dataset refers to the comparison of base and malware data 

for malware simulation 1, and similar naming conventions are used for Pilot 2 (malware 

simulation 2) and Pilot 3 (malware simulation 3) 

Table 8.  Pilot Studies Mann-Whitney U Test Results 

Datasets Variable P-value Conclusion 

Pilot 1 

Memory <1e-99 reject null hypothesis 

CPU <1e-99 reject null hypothesis 

Network Rx 0.0395 reject null hypothesis 

Network Tx <1e-15 reject null hypothesis 

Connections <1e-36 reject null hypothesis 

Logins <1e-99 reject null hypothesis 

Processes <1e-95 reject null hypothesis 

Pilot 2 

Memory <1e-99 reject null hypothesis 

CPU <1e-99 reject null hypothesis 

Network Rx 0.0006 reject null hypothesis 

Network Tx <1e-62 reject null hypothesis 

Connections <1e-60 reject null hypothesis 

Logins 0.2168 fail to reject 

Processes <1e-99 reject null hypothesis 

Pilot 3 

Memory <1e-99 reject null hypothesis 

CPU <1e-99 reject null hypothesis 

Network Rx 0.0395 reject null hypothesis 

Network Tx <1e-15 reject null hypothesis 

Connections <1e-36 reject null hypothesis 

Logins <1e-99 reject null hypothesis 

Processes <1e-95 reject null hypothesis 
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 Pilot 1 featured malware simulation 1, and a Mann-Whitney U test is performed 

between the base and malware data for each variable.  The network variable is split into 

received (rx) and transmitted (tx) packets.  For Pilot 1, all variables reject the null 

hypothesis.  This indicates that the base and malware datasets do not come from the same 

population, which shows that the Pi’s behavior changes when affected with malware.  Pilot 

3 experiences similar results, but Pilot 2 fails to reject the null hypothesis for the logins 

variable.  Inspection of the logs reveal that two of the tests in Pilot 2 are executed too close 

together.  The logins variable looks at the number of logins over the last 10 minutes, 

essentially creating a sliding window.  As the malware infected the Pis and increased the 

count, a login from previous trials dropped off, creating a net gain of zero.  This issue is 

corrected for the main experiment discussed in Chapter 4.  This reason, and the fact that 

the logins variable rejects the null hypothesis in Pilot 1 and 3, allow the logins variable to 

be included in the model.  

3.9   Chapter Summary  

This chapter explains the system design.  Section 3.2 covers the design goals.  Section 

3.3 discusses the anomalous detection model, and Section 3.4 describes the CIoTA agent.   

Section 3.5 describes the Blockchain, and Section 3.6 describes the hardware and software 

specifications for the Pi, as well as resource requirements for running the Blockchain.  

Section 3.7 discusses the malware simulations while Section 3.8 explains pilot studies and 

how the model is chosen.   
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IV.   Methodology  

4.1   Problem/Objective 

This research aims to demonstrate a Blockchain-based anomaly detection system for 

IoT devices, and evaluate its effectiveness.  A distributed average consensus Blockchain is 

constructed leveraging the CIoTA framework [32] with a custom detection model.  The 

experiment presented in this Chapter tests the ability of the system to detect a compromise, 

and evaluates the system’s performance under various scenarios.   

4.2   System Under Test 

Figure 27 displays the System Under Test (SUT) and Component Under Test (CUT) 

diagram.  Section 4.3 describes the metrics seen on the right side of the diagram.  These 

include an overall success or failure, a detection percentage, and the number of false 

positives.  Section 4.4 describes the factors applied to the system, which include changing 

the number of compromised hosts and the malware code.  This information is displayed on 

the left side of the diagram.  Section 4.5 describes the parameters that remain constant 

between all tests, which are displayed at the top of Figure 27.  The SUT is comprised of 12 

Raspberry Pis, all connected to each other as well as an alert and attack server.  Each 

Raspberry Pi, also referred to as a node, is part of a distributed average consensus 

Blockchain.  The CUT includes the agent that runs on the nodes and the model itself.  These 

components play a direct role in the ability of the system to detect a compromise. 
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Figure 27.  System Under Test 

4.2.1   Assumptions  

The following assumptions are made when designing and executing this experiment: 

1. The malware attempts to hide its presence on the device but does not attempt to 

spread to other nodes.   

2. Adversaries are unable to break the symmetric encryption on Blockchain 

communications, preventing them from sending false data. 

3. The agent itself remains uncompromised. 

4. Nodes may have additional programs running (e.g., automatic update checks) but 

all nodes behave the same.  No one node has a different software configuration 

with different behavior. 
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4.3   Metrics  

For each trial, there are two outcomes: success or failure.  The trial is successful if the 

system can accurately detect a malware compromise.  This requires the Blockchain to reach 

consensus on a trusted model and for the agents on the malicious nodes to correctly detect 

a compromise.  If the Blockchain fails to reach consensus (i.e., generate new blocks), or 

alerts are not generated for malicious hosts, the trial is a failure.  Success and failure are 

categorical variables. 

The detection percentage is calculated by 
𝒅

𝒏
, where 𝒅 is the number of unique successful 

detections and 𝒏 is the number of compromised nodes present in the trial.  For example, if 

a trial features three compromised nodes and only two are detected, the detection 

percentage is 
2

3
= .66 = 66%.  A precision of two decimal places is used for the division, 

leading to an integer percentage.  More than one successful detection on a single node is 

recorded but is not considered for this metric.   

False positives occur when the agent generates an alert for a node that is not one of the 

compromised nodes.  This may also occur if a node generates an alert before any malware 

attacks are launched.  False positives reduce the effectiveness of the system, and should be 

limited wherever possible.   

4.4   Factors   

The first factor is the number of compromised nodes.  This number changes based on 

the trial, which is shown in Table 9.  These values include one, three, six, and eight 

compromised nodes.  One compromised node indicates a small infection and should be 

detected by the system.  Three compromised nodes represent a larger infection but should 
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be detected.  Six compromised hosts indicate a large infection that has compromised 50% 

of the nodes.  Consensus becomes difficult, but alerts should continue to be generated.  

Eight compromised nodes represent a two-thirds compromise of the Blockchain and should 

result in an alert at the beginning of the attack.  However, the malicious nodes may have a 

strong impact on future blocks, and alerts should decrease.  Depending on network delay, 

some nodes may be able to avoid detection.  For each trial, the specific Raspberry Pis to be 

infected are randomly selected.   

Table 9.  Trial Description 

Trial # 
# Compromised 

Nodes 

Malware 

Simulation  

1 1 1 

2 1 1 

3 1 1 

4 1 2 

5 1 2 

6 1 2 

7 1 3 

8 1 3 

9 1 3 

10 3 1 

11 3 1 

12 3 1 

13 3 2 

14 3 2 

15 3 2 

16 3 3 

17 3 3 

18 3 3 

19 6 1 

20 6 1 

21 6 1 

22 6 2 

23 6 2 

24 6 2 
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Table 9.  Trial Description (continued) 

Trial # 
# Compromised 

Nodes 

Malware 

Simulation  

25 6 3 

26 6 3 

27 6 3 

28 8 1 

29 8 1 

30 8 1 

31 8 2 

32 8 2 

33 8 2 

34 8 3 

35 8 3 

36 8 3 

The second factor is the malware simulation.  Three separate simulations are created to 

represent common types of IoT malware.  Each malware simulation is combined with the 

number of compromised nodes, as seen in Table 9.  Each combination (e.g., malware 

simulation 1 with one compromised node) is run three times.  This limits the effect of 

outliers. 

4.5   Parameters 

Several experimental parameters remain the same for each trial.  These include the 

number of Raspberry Pis in the testbed (12), the starting software and hardware 

configuration of these nodes (Raspbian Stretch operating system), and the duration of the 

trial (300 seconds before malware launch and 300 seconds after). 

4.6   Experiment Design  

The following sections describe the experiment (4.6.1), the treatments being performed 

(4.6.2), data collection and logging (4.6.3), and the testing process (4.6.4).   
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4.6.1   Experiment Description 

Prior to running the experiment for the first time, three control trials are run.  These 

trials do not include any factors, and thus lack any metrics besides false positive count.  

The purpose of these control trials is to ensure that the agents are running properly and that 

the testing procedures, to include execution and analysis, are working.  These control trials 

are not included in the overall trial listing in Table 9. 

Before running a trial, all nodes are restarted to ensure a clean slate.  Each trial begins 

with all nodes online and connected to each other.  The agents on the 12 test nodes are 

started simultaneously from the test control server and each node is configured to send 

alerts to the alert server on Pi 14.  This begins the trial, and the agents run normally (i.e., 

with no malware infection) for 300 seconds.  Then, the malware simulation launches from 

the attack server on Pi 13 against the nodes specified by the factors in Section 4.4.  After 

300 additional seconds, the trial ends.  

4.6.2   Factors 

The factors include the number of compromised nodes and the malware simulation.  

The number of compromised nodes is dependent on the trial (listed in Table 9), and can be 

zero (for control trials), one, three, six, or eight.  Once the number of compromised nodes 

is determined, individual nodes must be randomly selected.  For example, Trial 18 features 

three compromised nodes.  In this case, three random numbers between 1 and 12 are 

generated without replacement. 

On the test control server, several terminals are opened and connected via SSH to the 

attack server.  The number of terminals opened corresponds to the number of compromised 

nodes.  The attack server is checked to ensure that the web server and netcat listener are 
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active.  Then, the commands for the chosen malware infection are pre-staged in the 

terminals.   

4.6.3   Logging  

The Blockchain agents are configured to log when a new block is accepted and the 

contents of that block.  Additionally, the local data being consumed by the agents and the 

reception of partial blocks is recorded.  These logs are stored locally on the device, and 

after the trial are pulled back to the test control server and combined.  

A terminal on the test control server is connected to the alert server.  During trial 

execution, this terminal displays all alerts to the screen.  This can be correlated with agent 

logs to identify the exact time the alert was generated.  These alerts determine whether the 

trial is a success or failure, as well as detect false positives when compared to the test plan.   

4.6.4   Testing Process  

Detailed instructions for executing a trial are located in Appendix F.  For each trial, the 

following steps are taken:  

1. Restart all Pis (1-14) 

2. Determine factors (number of compromised and malware) 

3. Randomly select treatment nodes 

4. Open terminals to attack server, stage malware simulation commands, ensure web 

server and netcat listener are running  

5. Open terminal to alert server, execute command to start monitoring for alerts 

6. At trial start time, launch agents on Pis 1-12 simultaneously 

7. Allow nodes to run for 300 seconds, monitoring any alerts 

8. Execute pre-staged malware simulation commands  
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9. Allow nodes to run for 300 seconds, monitoring any alerts  

10. Manually stop alert server process (agents stop automatically after 600 seconds) 

11. Pull logs from Pis 1-12 

12. Delete malware artifacts on Pis 1-12 

13. Run data processing scripts on logs  

14. Document alerts to determine metrics  

4.7   Chapter Summary  

This chapter explains the research methodology.  Section 4.1 discusses the overall 

problem and experiment objective.  Section 4.2 describes the System Under Test, and 

briefly explains the diagram.  Section 4.3 explains the metrics, and Section 4.4 explains the 

factors.  Constant parameters are discussed in Section 4.5, and the experiment design is 

described in Section 4.6. 
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V.   Analysis and Results 

5.1   Chapter Overview 

This chapter describes the results of the experiment laid out in Chapter 4, and provides 

analysis.  Section 5.2 explains the success or failure results and provides analysis on why 

some nodes are undetected.  Section 5.3 provides detection percentages.  Section 5.4 

explains the false positive results.  Section 5.5 discusses block timing, and how larger 

infections affect the Blockchain’s consensus.  Section 5.6 explains how this concept scales 

to larger numbers of devices.  Specific trial results are located in Appendix G. 

5.2   Success/Failure Results 

The control trials run successfully and do not contain any false positives.  Not counting 

these, there are 36 trials.  In every trial, at least one of the agents correctly generates an 

alert on malicious activity.  Let 𝒅𝒊 represent the number of unique successful detections for 

trial 𝒊 and let 𝒏𝒊 represent the total number of malicious nodes in trial 𝒊.  Of the 36 trials, 

19 (52%) can detect all malicious nodes (i.e., 
𝒅𝒊

𝒏𝒊
= 1).  This is referred to in Section 5.3 as 

a “perfect detection”.  The remaining 17 trials are partial detections (i.e., 0 <
𝒅𝒊

𝒏𝒊
< 1).  The 

average of all trial detection percentages is 82%.  This is given by the equation: 

∑
𝑑𝑖

𝑛𝑖

36
1

36
= .82 

The overall detection rate, the number of detected nodes divided by the total number 

of compromises, is 75%.  This is given by the equation: 

∑ 𝑑𝑖
36
1

∑ 𝑛𝑖
36
1

= .75 
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 Section 5.3 discusses how factors impact detection percentages, but there is one 

experimental design issue that contributes to malicious nodes going undetected.  Close 

inspection of the logs reveals a flaw in the anomaly detection model that, when corrected, 

could improve the detection rate.  The scoring system generates alerts in reaction to drastic 

changes but allows small changes to take place.  This leads to situations where comparing 

values over a 20 second range leads to a large difference that is sufficient to generate an 

alert.  However, splitting the same data into 20 different segments and comparing each to 

the one before fails to generate an alert.  Pi 6 on trial 34 (eight compromised nodes, 

malware simulation 3) demonstrates this situation.  During trial 34, Pi 6 is a compromised 

node that goes undetected.  Malware simulation 3 is launched against this node 300 seconds 

into the trial.  Immediately before the malware launch, the model variables look normal.  

At 320 seconds, they are drastically different, enough to cause an alert.  However, the 

changes occur gradually, allowing Pi 6 to avoid generating an alert.  By 304 seconds, the 

process count and established connections increase, but CPU usage and logins remain 

unchanged.  By 312 seconds, those two variables increase, but the process count and 

established connections are only compared to their last value and thus do not affect score.  

New data is consumed every second, and several times the score reaches the low 60s (the 

threshold is 55), but never actually crossed the threshold.  A new block is accepted during 

this period as well, but the changes are incremental.  If the block is created two seconds 

later, the agent on Pi 6 generates an alert.   

The next block occurs almost a minute later, by which point several of the variables 

subside to normal levels.  Malware simulation 3 experiences the worst detection rate, and 

it is primarily caught on the initial infection.  The anomaly detection model used in this 
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research has too small of a snapshot: by polling every second and comparing to previous 

values, this model only sees a two-second window.  Some variables, like the last command 

used for login and the processor load average used for CPU, do observe a larger window.  

However, the others are limited.   By increasing the detection window for all variables, the 

Blockchain can detect more malicious activity.  The simplest method is to continue to 

consume new data every second but save these values and perform comparisons on a larger 

interval.  This increases the memory usage of the model but can be mitigated by only saving 

the minimum and maximum values and checking the difference.  

5.3   Detection Percentages 

Table 10 and Figures 28-31 show detection percentages by trial.  Table 10 is organized 

by column, with each column representing a different number of compromised nodes.  The 

first column contains trials with one compromised node (trials 1-9).  Agents detect every 

malicious node in these trials.  The second column shows trials containing three 

compromised nodes (trials 10-18).  These trials feature six perfect detections, but there are 

four malicious nodes that go undetected across three trials.  Three of these undetected nodes 

occur in trials featuring malware simulation 3 (Trials 17 and 18).  The third column shows 

trials containing six compromised nodes (trials 19-27).  These trials saw an increase in the 

number of undetected nodes, with 14 of 54 malicious nodes going undetected.  Malware 

simulations 1 and 2 are similar, but malware simulation 3 (trials 25-27) has the lowest 

detection rate.  The fourth column shows trials with eight compromised nodes (trials 28-

36).  The overall detection numbers decrease, although malware simulation 1 has a perfect 



77 

detect rate.  The agents continue to exhibit low detection ability against malware simulation 

3, with trial 35 catching one of eight malicious nodes.  Figures 27-30 illustrate this data.  

Table 10.  Detection Percentages by Trial  

Trial # 
Detection 

% 
Trial # 

Detection 

% 
Trial # 

Detection 

% 
Trial # 

Detection 

% 

1 100 10 66 19 66 28 100 

2 100 11 100 20 83 29 100 

3 100 12 100 21 83 30 100 

4 100 13 100 22 100 31 87 

5 100 14 100 23 83 32 50 

6 100 15 100 24 66 33 87 

7 100 16 100 25 83 34 75 

8 100 17 66 26 66 35 12 

9 100 18 33 27 33 36 25 

 

 
Figure 28.  Detection Percentages: One Compromised Node 
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Figure 29.  Detection Percentages: Three Compromised Nodes  

 

 
Figure 30.  Detection Percentages: Six Compromised Nodes  
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Figure 31.  Detection Percentages: Eight Compromised Nodes   

Table 11 and Figure 32 describe changes in the detection percentages as the number of 

compromised hosts increases.  For each factor value, the average of trial detection 

percentages is listed.  Table 11 shows that detection percentage drops as the number of 

compromised hosts increased.  Figure 32 illustrates this change.  This occurs because larger 

numbers of compromised nodes can influence the consensus value stored in blocks.  When 

combined with the timing issues discussed in Section 5.2, this allows a few malicious nodes 

to avoid detection.  When only one malicious node is present, it is difficult to hide.  This 

continues when there are three malicious nodes; the infection is unable to strongly 

influence the consensus of the network.   

Table 11.  Detection Percentage by # Compromised Hosts 

# Compromised 

Hosts 

Detection 

Percentage 

1 1.00 

3 0.85 

6 0.74 

8 0.71 
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Figure 32.  Detection Percentage by Number of Compromised Nodes 

Table 12 and Figure 33 describe the detection percentages by malware simulations.  

This data shows that the system is adept at detecting malware simulation 1 and 2, but not 

malware simulation 3.  This occurs because malware simulations 1 and 2 have a sustained 

effect, while malware simulation 3 sees periodic activity.  All of the malware simulations 

see a spike in activity immediately after the infection, but the CPU changes in malware 

simulation 1 and the connections and process count changes in malware simulation 2 

persist throughout the trial period.  Also, the lack of a file I/O variable limits the ability to 

detect malware simulation 3’s activity.  

Table 12.  Detection Percentage by Malware Simulation  

Malware 

Simulation  

Detection 

Percentage 

1 0.92 

2 0.90 

3 0.66 
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Figure 33.  Detection Percentage by Malware Simulation 

5.4   False Positives 

Over the course of 36 trials, there are 44 false positive detections, averaging 1.22 per 

trial.  False positives occur when an alert is generated for a node that does not have 

malware, or when a selected node generates an alert before the malware has launched.  The 

majority of these occur immediately after accepting a block with different values.  Since 

this coincides with receiving blocks from another node, the network variable is always 

high, which can contribute to lower scores and thus false positives.  However, a single 

variable is not enough to cause a failure.  In many cases, CPU usage and process count 

contribute to the alert.  A local spike in CPU usage and process count, likely from the 

background OS, coincides with a large amount of network traffic.  This represents the most 

likely cause of the false positives.   

In trials with eight compromised nodes, false positives may occur for a different reason.  

With eight compromised nodes, the values in the trusted model are manipulated by the 
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malware.  This has a side-effect of making normal-behaving nodes look anomalous, which 

in turn leads them to generate false positive alerts.  Table 19 in Appendix H contains 

detailed information about every false positive, and shows the variables involved.  

5.5   Block Characteristics 

This section provides additional data about blocks, particularly how malware infections 

affect the Blockchain’s consensus mechanism.  This data reinforces the fact that CIoTA, 

and collaborative anomaly detection in general, is less effective when a large proportion of 

nodes are compromised.  

The values stored in blocks represent the trusted model that nodes compare themselves 

against.  If these values are manipulated, the attacker has effectively corrupted the trusted 

model.  Figure 34 shows an example of this.  Each point is a CPU load average value from 

a block.  Specifically, the CPU variables from all records in a completed block are averaged 

together to produce a single value.  The lines represent three different trials: a control trial, 

Trial 1, and Trial 30.  The control trial has no malware, and trials 1 and 30 both feature 

malware simulation 1.  However, while Trial 1 has a single malicious node Trial 30 has 

eight.  The malware is launched at 300 seconds into each trial.  The block values in Trial 1 

are similar to the control trial, which indicates that a single malicious node cannot affect 

the trusted model.  In contrast, the block values in Trial 30 show an increase.  By the end 

of Trial 30, the detection system assumes that a CPU load average of 0.8 is normal activity.  

Additionally, three false positives are generated in this trial from normal nodes comparing 

themselves against these high block CPU values.   
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Figure 34.  Block CPU Values Comparison 

Tables 13 and 14 show block timing data organized by factor.  The average number of 

blocks is listed; more blocks indicates that consensus is running smoothly.  The average 

time between blocks is also listed; lower times are desired.  Tables 13 and 14 also show 

the average time of the last block, out of 600 seconds.  Large differences in this column 

indicate that consensus is slowing down, which may be indicative of malicious nodes 

manipulating blocks.  There is not a clear distinction in Table 13, but there are trends in 

Table 14.  The average number of blocks decreases as higher numbers of nodes are 

infected.  Additionally, when there are eight infected nodes the last block occurs, on 

average, 79 seconds before the stop of the trial.  This means that over a minute passes 

without nodes comparing themselves to each other.  These timing issues decrease the 

effectiveness of the system.   
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Table 13.  Block Timing by Malware Simulation 

Malware 

Simulation 

Average # of 

Blocks (s) 

Average Time to 

Next Block (s) 

Average Last 

Block Time (s) 

1 14.42 39.69 554.92 

2 13.83 45.64 550.30 

3 15.17 39.05 573.59 

 

Table 14.  Block Timing by # Compromised Nodes  

# Compromised 

Nodes 

Average # of 

Blocks (s) 

Average Time to 

Next Block (s) 

Average Last 

Block Time (s) 

1 16.33 36.05 578.89 

3 15.78 36.56 571.67 

6 13.11 47.51 571.00 

8 12.67 42.51 521.00 

5.6   Scalability 

This experiment utilizes 12 nodes on the test network, but this concept can scale to 

larger numbers of hosts.  Golomb’s research [32] utilizes 48 Raspberry Pis successfully. 

There is no specific bottleneck limiting scalability, but there are several things to consider.  

Firstly, the current code is configured to send TCP messages to a single alert server.  The 

current configuration does not provide a mechanism for adding multiple alert servers.  To 

combat this centralization, the code should be modified to allow for more alert servers or 

should be changed to an alternate message format, such as sending an email to network 

admins.  Secondly, the current configuration uses a multicast group on an isolated network.  

For deployment on the primary network, or on an Internet-connected interface, consultation 

with a network administrator is required to ensure that multicast packets can reach all 

devices and to limit the forwarding of these packets to only what is required.  Different 

scenarios may require a specific multicast address.  Other than these considerations, this 

IDS should be able to scale to large numbers of hosts. 
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5.7   Chapter Summary  

This chapter describes the results of the experiment laid out in Chapter 4, and provides 

analysis.  Section 5.2 provides the success or failure results and delivers an explanation for 

why nodes go undetected.  Section 5.3 explains detection percentages.  Section 5.4 

discusses the false positive results and why they occur.  Section 5.5 discusses block 

characteristics, and Section 5.6 provides an overview of scalability concerns.  

  



86 

VI.   Conclusions and Recommendations 

6.1   Chapter Overview 

This chapter summarizes the research results found during experimentation.  Section 

6.2 discusses conclusions from the experiment and the hypothesis.  Section 6.3 explains 

the significance and contributions of this research.  Section 6.4 describes possibilities for 

future research.   

6.2   Research Conclusions 

The hypothesis states that the anomaly detection system solution successfully alerts on 

IoT botnet malware.  This is successful, as every trial is able to detect a malware intrusion.  

However, many of these are only partial detections, and overall only 75% of malicious 

nodes are identified.  There are also a large number of false positives, averaging 1.22 per 

trial.  The system is effective at detecting intrusions from malware simulations 1 and 2, 

with both averaging above 90%.  Additionally, experiments show that a single 

compromised node cannot affect network consensus.  This reinforces the claim that 

increased numbers of nodes enhance the difficulty for attackers to affect the Blockchain 

and the IDS.   

6.3   Research Significance 

The majority of IoT security research focuses on the perimeter defenses and relies 

heavily on network segmentation.  This research shows that security solutions can be 

deployed directly to IoT devices.  This allows for increased flexibility and presents more 

options to network owners.  The collaborative anomaly detection system leverages fellow 

IoT devices as a security asset and presents a security system that is effective at detecting 
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common types of IoT malware.  The ability to customize and adjust the detection model 

allows this Blockchain design to be used for a variety of different applications.  When 

tailored to a specific threat, such as with malware simulation 1 and 2, this method is 

effective. 

This research is limited because it requires many identical IoT devices to be effective.  

If the majority of the network is compromised, detection becomes less effective.  

Additionally, this research only detects an intrusion, it does not prevent an attack.  Further 

limitation include encryption, where the use of symmetric encryption requires keys to be 

pre-shared amongst all nodes.  The resource requirements are low, but still may be too high 

for some IoT devices.  Implementation of this solution does require the ability to run code 

on a device, which may be unavailable in commercial products. 

6.4   Future Research  

Many of the detection failures in the experiment can be attributed to problems with the 

detection model.  The primary issue is that polling occurs too fast and sees the malware 

infection as a gradual change instead of a drastic one.  This thesis theorizes that looking at 

changes over a larger window improves this detection.  For example, the agent could 

consume new data every second, but save the maximum and minimum values.  

Comparisons on the difference between these two values occur after a 30 second window.  

Future research is warranted to test this theory.  

A second issue is the malware samples and detection variables.  In this thesis, six 

detection variables are split evenly in the scoring calculations.  However, more complex 

malware samples, and a detailed analysis of these samples, may determine that equal 
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weighting is not appropriate.  For instance, if CPU usage has a pronounced effect on all 

malware samples, weighting it higher may lead to improved detection rates.  Further 

research into different model configurations may result in better detection abilities.  

Similarly, new variables in areas like file I/O and power consumption can be explored. 

 This thesis uses Raspberry Pi devices that lack a running IoT application.  The 

presence of such an application complicates detection but improves realism.  Actual IoT 

devices may be used if command line access to the underlying OS can be achieved.  

Additionally, connecting a camera to the Raspberry Pi and installing relevant applications 

may provide enhanced realism.  A similar software improvement is the concept of a 

“vendor update”, where a non-malicious code change is pushed to all nodes.  If the system 

can successfully react to such an event, it increases its applicability.  Further research could 

investigate how the Blockchain reacts, particularly if there are a large number of alerts. 

The Raspbian Stretch OS includes unnecessary programs and processes that may 

impact testing.  A lighter OS, or even a smaller and more resource-constrained device, 

improves the realism of the scenario and more closely mimics actual IoT devices.   
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Appendix A.   Malware Simulation Code 

// sample1.cpp 

// Malware Simulation 1 is designed to mimic cryptocurrency mining bots 

// The string "hello" has a number appended to the end. The hash is  

// calculated and checked to see if it starts with four zeros. If it 

// matches, the number will be sent to the attack server. If the hash 

// does not match, the number is incremented and the hash is  

// recalculated.  

#include <string.h> 

#include <stdio.h> 

#include <string> 

#include <stdlib.h> 

using namespace std; 

int main() { 

    char buff[75]; 

    string s = "hello"; 

    string s1; 

    string command; 

    FILE *fp; 

    // This loop runs four times, which covers the trial period  

    for (int i =0; i< 4;i++) { 

        // Calculate the hash and store in buffer 

        int x = 1; 

        s1 = s + to_string(x); 

        command = "echo " + s1 + " | openssl sha256"; 

        fp = popen(command.c_str(), "r"); 

        fgets(buff, 74, fp); 

        pclose(fp); 

        buff[74] = '\0'; 

        // The output from the openssl command begins with some  

        // additional text, so the first character is at position 9 

        while (!(buff[9] == '0' && buff[10] == '0' && buff[11] == '0' 

&& buff[12] == '0')) { 

            // If the check failed, reset the buffer, increment x, 

            memset(buff, '\0', 75); 

            x++; 

            s1 = s + to_string(x); 

            command = "echo " + s1 + " | openssl sha256"; 

            fp = popen(command.c_str(), "r"); 

            fgets(buff, 74, fp); 

            pclose(fp); 

            buff[74] = '\0'; 

        } 

        // After a successful check, send the nonce 

        memset(buff, '\0', 75); 

        command = "echo " + to_string(x) + " | nc 192.168.0.163 29292 -

w 1"; 

        system(command.c_str()); 

    } 

} 

Figure 35.  Malware Simulation 1 Code: Cryptocurrency Mining Bot  
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// sample2a.cpp 

// This malware simulation mimics DDoS malware. It spawns a second 

// process to watch the system for ports, and then opens and maintains 

// a connection to the attack server. This simulates waiting for  

// an attack command 

#include <stdlib.h> 

using namespace std; 

int main() { 

    // This command starts the sample2b process in the background 

    system("./sample2b &"); 

    // This loop opens a connection and attempts to keep it open for 

    // five minutes. If the connection is lost, it will reconnect 

    while (true) {   

        system("nc 192.168.0.163 29292 -w 300"); 

    } 

} 

 

// sample2b.cpp 

// This is the second program for malware simulation 2. This process 

// simply watches the open ports on the system, running the command 

// every second.  

#include <stdlib.h> 

#include <thread> 

#include <chrono> 

using namespace std; 

int main() { 

    while(true) { 

        system("netstat -untap > /dev/null 2>&1");   

        std::this_thread::sleep_for (std::chrono::seconds(1));       

    } 

} 

Figure 36.  Malware Simulation 2 Code: DDoS Malware  
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// sample3.cpp 

// This malware simulation mimics spyware. The malware constantly  

// writes to a file, which is similar to saving video or audio data. 

// After a set period, the malware sends the collected data to the 

// attack server. This process repeats to cover the entire trial 

// period. 

#include <stdlib.h> 

#include <thread> 

#include <chrono> 

#include <iostream> 

#include <stdio.h> 

#include <string> 

#include <fstream> 

using namespace std; 

int main() { 

    ofstream myFile; 

    // Loop to cover trial period  

    for (int k=0; k<5; k++)  { 

        // Open file for writing  

        myFile.open("sample3b.txt", ios::out | ios::app);    

        // Every 60 seconds, write the word hello 20 times 

        for (int i = 0; i < 60; i++) { 

            for (int j = 0; j < 20; j++) { 

                myFile << "hello"; 

            } 

            this_thread::sleep_for (chrono::seconds(1));     

        } 

        myFile.close(); 

        // After 60 seconds, send the data to the attack server 

        system("cat sample3b.txt | nc 192.168.0.163 29292 -w 2"); 

    } 

    system("rm sample3b.txt"); 

} 

Figure 37.  Malware Simulation 3 Code: Spyware  
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Appendix B.   Raspberry Pi Setup  

Each Raspberry Pi is provided an 8 GB Secure Digital (SD) card with an unaltered 

Raspbian Stretch Operating System.  This is plugged into a monitor and keyboard to 

configure the Wi-Fi interface and hostname using the raspi-config script that comes on 

every Raspbian distribution.  Additionally, the SSH server is enabled on each Pi.  After the 

Pis are configured, they are plugged into the test network.  A static IP address is added by 

editing the dhcpcd.conf file located in the /etc/ directory.  The routing metrics are also 

modified to make the Ethernet interface value larger than the Wi-Fi interface.  The means 

that unless a command explicitly specifies the test network (192.168.0.0/24) it defaults to 

the Wi-Fi interface.  This allows easier control over the device and keeps the eth0 interface 

clear from extraneous traffic.  These metrics can be seen in Figure 38, where the eth0 

interface is set to 450 and the wlan0 interface is set to 303.   

 

Figure 38.  Routing Metrics  

Next, SSH keys are set up to allow easy access to the Pis from the test computer.  The 

test machine’s public key is sent to each of the Pis, so that it is recognized when a new SSH 

session is created.  This allows the test computer to access Pis without having the manually 

enter the password.  The command is: 

cat ~/.ssh/id_rsa.pub | ssh pi@10.1.14.151 'cat >> 

.ssh/authorized_keys` 



93 

The install script in Figure 39 must be sent to Pis 1-12 and 14.  This script sets up 

cmake, telnet, the spdlog library, and the matrixssl library.  The code is transferred to each 

Pi using SCP.  An example for sending the script to Pi 1 is: 

scp install.sh pi@10.1.14.151:/home/pi 

Once a file has been transferred, it requires permission changes to run.  This can be 

accomplished using the chmod command, which changes the permissions on a file.  An 

example is chmod 777 install.sh, which allows the install script to run.  After installing 

several libraries, it downloads and compiles the Blockchain code from the test control 

server at IP address 10.1.14.128.  This command takes time due to having to compile source 

code.  Once this step finishes, the Pi is ready to participate in the Blockchain.  The alert 

server also requires the Blockchain code (it has its own executables) but the attack server 

does not.   
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#!/bin/bash 

# install_script.sh 

# This script installs all dependencies for the Blockchain agent 

# These include cmake for compilation, spdlog for logging, telnet for 

# the malware simulation, and the actual code from Github 

# This section installs cmake 

wget https://cmake.org/files/v3.13/cmake-3.13.0-rc2.tar.gz 

tar -zxf cmake-3.13.0-rc2.tar.gz 

cd cmake-3.13.0-rc2 

sudo ./bootstrap  

sudo make 

sudo make install 

# This section installs spdlog and telnet  

sudo apt-get -y install libspdlog-dev 

sudo apt-get install telnetd 

# This section installs the agent code in a directory called ciota 

cd ~ 

scp -r josh@10.1.14.128:/ciota ./ciota 

cd ciota 

chmod 777 install_matrixssl.sh 

./install_matrixssl.sh 

# The matrixssl library has some pathing issues, but were solved  

# by adding this to the C++ include path.  

sudo echo "export 

CPLUS_INCLUDE_PATH=/home/pi/ciota/matrixssl/core/include/core:/home/pi/

ciota/matrixssl/core/config:/home/pi/ciota/matrixssl/core/osdep/include

:/home/pi/ciota/matrixssl/core/include" >> /etc/profile 

mkdir build 

cd build 

cmake .. 

make 

Figure 39.  Agent Install Script 
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Appendix C.   Pilot Studies Setup  

After the Raspbian operating system is launched and the telnet client is installed, the 

pilot studies are conducted.  The first step is to install the metrics.sh script in the home 

directory for the “pi” user on Pis 1-12, which is the main login account for each Raspberry 

Pi.  This code is shown in Figure 40, but detailed explanations of the commands are in 

Section 3.3.  The code is transferred to each Pi using the SCP command detailed in 

Appendix B, with the destination location being the pi user’s home folder.  Once the code 

is transferred to Pis 1-12, it can be controlled from the test machine using PSSH.  This 

command launches a non-interactive SSH shell to the target host, and performs this action 

in parallel for all specified hosts.  An example of PSSH is: 

pssh -h hosts -l pi "chmod 777 metrics.sh" 

The -h option is the target file and determines what computers this command contacts.  

The file named “hosts” consists of the IP addresses of Pis 1-12, and this example changes 

the permissions of the metrics.sh script on all twelve machines.  The IP address used in the 

hosts file is for the Wi-Fi interface, as the test control computer is not connected to the 

hard-wired test network.  The -l option lists the user account that is used to login.  In this 

research, the “pi” user is utilized.  Since the metrics script is in the pi user’s home directory, 

no additional folder paths are needed.  Another useful option in the PSSH command is 

timeout (-t).  When the timeout period ends, the command stops as well, which is useful 

for stopping the executable.  This technique is used throughout this research.  For example, 

when the agent is run during the main experiment, the timeout is set to 600 seconds.  This 

kills the agent process on each node after 600 seconds, or ten minutes, have elapsed.  

#!/bin/bash 

# metrics.sh 
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# pulls data every second on memory, cpu, disk, tx, rx, established 

# connections, logins, and number of processes.  Output is saved to  

# a file called metrics.txt 

rm metrics.txt 

echo "Date,Mem,CPU,Disk,Rx,Tx,EstConn,Login,ProcCount" >> 

metrics.txt 

rx_old=`netstat --interfaces | grep eth0 | awk '{print $3;}'` 

tx_old=`netstat --interfaces | grep eth0 | awk '{print $7;}'` 

while : 

do 

    sleep 1 

    mem=`free -m | awk 'NR==2{printf "%.2f", $3*100/$2 }'` 

    cpu=`top -bn1 | grep load | awk '{printf "%.2f", $(NF-2)}'` 

    disk=`df -h | awk '$NF=="/"{printf "%s", $5}'` 

    rx_new=`netstat --interfaces | grep eth0 | awk '{print $3;}'` 

    tx_new=`netstat --interfaces | grep eth0 | awk '{print $7;}'` 

    rx=$(($rx_new - $rx_old)) 

    tx=$(($tx_new - $tx_old)) 

    tx_old=$tx_new 

    rx_old=$rx_new 

    est=`sudo netstat -untap | grep EST | wc -l` 

    log=`last -s -10min | wc -l` 

    pc=`ps aux | wc -l` 

    dat=`date "+%Y-%m-%d %H-%M-%S.%3N"` 

    echo "$dat,$mem,$cpu,$disk,$rx,$tx,$est,$log,$pc" >> metrics.txt 

done  

Figure 40.  Metrics Script 

All Pis are now ready for execution.  Pi 13 is the attack server, and the malware samples 

are staged on this device prior to the start of any trial.  The code for the malware samples 

is described in Appendix A.  These individual files are combined into a single archive using 

a tar command.  The archive is then sent to a directory where it can be accessed via the 

Apache web service.  The commands to accomplish these tasks are: 

tar -cf samples.tar sample1 sample2a sample2b sample3 and sudo cp 

samples.tar /var/www/html 
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Appendix D.   Pilot Studies Execution 

To begin the execution of the baseline trials, the metrics.sh script is launched on Pis 1-

12 via PSSH.  By setting a timeout of 600 seconds, the metrics.sh script halts after 10 

minutes of execution.  The command is: 

pssh -h hosts -l pi -t 600 “./metrics.sh”  

The malware is launched 300 seconds into the trial.  Since the malware wants to 

simulate a bot compromise, a telnet login is utilized.  On the test control server, 12 

additional terminal windows are opened.  A command is copied into each window, with 

the only difference being the IP address of the target machine.  The terminal on the test 

control server is connected to the attack server via SSH, and telnet commands are launched 

against the target node from this platform. 

Figures 41, 42, and 43 show the telnet commands for malware samples 1, 2, and 3 

respectively.  For each example, Pi 1 is the target located at 192.168.0.151.  These 

commands are transferred into the terminals (via copy and paste) on the test control server, 

but not immediately executed.  This is referred to as “staging” the commands.  During the 

pilot studies, the commands are executed in rapid succession by the test administrator, 

beginning at 300 seconds into the trial.  

( sleep 6; echo pi; sleep 1; echo myraspberry123; sleep 2; echo "wget 

http://192.168.0.163/samples.tar"; sleep 3; echo "tar -xf samples.tar"; 

sleep 1; echo "chmod 777 sample1"; sleep 1; echo "nohup ./sample1 &"; 

sleep 10; echo "exit" ) | telnet 192.168.0.151 

Figure 41.  Telnet Command Sample 1 
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( sleep 6; echo pi; sleep 1; echo myraspberry123; sleep 2; echo "wget 

http://192.168.0.163/samples.tar"; sleep 3; echo "tar -xf samples.tar"; 

sleep 1; echo "chmod 777 sample2a"; sleep 1; echo "chmod 777 sample2b"; 

sleep 1; echo "nohup ./sample2a &"; sleep 10; echo "exit" ) | telnet 

192.168.0.151 

Figure 42.  Telnet Command Sample 2 

( sleep 6; echo pi; sleep 1; echo myraspberry123; sleep 2; echo "wget 

http://192.168.0.163/samples.tar"; sleep 3; echo "tar -xf samples.tar"; 

sleep 1; echo "chmod 777 sample3"; sleep 1; echo "nohup ./sample3 &"; 

sleep 10; echo "exit" ) | telnet 192.168.0.151 

Figure 43.  Telnet Command Sample 3 

In each of these commands, the attack platform logins to the target node and orders the 

target to download a file from the attacker’s web server.  This file is extracted, the 

permissions are changed to make it executable, and then the programs are run.  Sleep 

instructions allow the previous command enough time to run before the next instruction is 

executed.  The “nohup” option keeps the samples running after the telnet session ends.  The 

samples halt once the Pi reboots or code execution ends. 

After ten minutes expire the metrics.sh PSSH commands time out.  Pis 1-12 are 

rebooted via PSSH.  The metrics.txt file on each Pi is copied back to the test computer via 

SCP.  Then, all sample files and the nohup.out file (produced by the use of nohup in the 

telnet commands) is deleted from each Pi, and the Pi is rebooted.  After these steps are 

completed, the Pi is ready for the next trial.  One key element is ensuring that the attack 

server is running a netcat listener on port 29292.  Otherwise the malware does not function 

correctly and the resulting data is not accurate.  

Data processing refers to taking the logs from the nodes and converting them into a 

desired format.  For pilot studies, the desired format is a comma separated value file.   On 

the main test computer, the script in Figure 44 is used to process the data.  This script adds 

an indicator to each piece of data labeling it as part of the base or malware portion of the 
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trial.  This is based on timestamps, and three arguments to run the script are start time, 

malware launch time, and end time.  Future scripts during the main experiment convert the 

timestamps to seconds to make this easier, but the pilot studies use the actual timestamps 

in format yyyy-mm-dd_hh-mm-ss.  Prior to running the script, the log files from each Pi 

are transferred to the test control server via SCP commands.  These files are named 1.txt, 

2.txt, etc.  After the running of the script, the logs are stripped to only data from the trial 

runtime, and are renamed to 1.csv, 2.csv, etc.   

 
#!/bin/bash 

# process_baseline.sh 

# This script processes the logs for the baseline trials.  

# Primarily, this script appends a new column to differentiate the  

# base data from the malware data. This difference is calculated from 

# the timestamps.  

# ./process_baseline <start_time> <malware_launch_time> <end_time> 

for value in {1..12} 

do 

    # Append column name "Type" to end of first line 

    sed '/Date/ s/$/,Type/' $value.txt > tmp1 

    # Delete any data before the start time  

    # Metrics script was started a few seconds before the trial start  

    sed -e "1,/$1/ {1!{/$1/!d;}}" tmp1 > tmp2 

    # Assign data between start time and malware launch as "Base" 

    sed -e "2,/$2/ {/$2/ !{s/$/,Base/}}" tmp2 > tmp3 

    # Assign data between malware launch and end time as "Malware" 

    sed -e "/$2/,/$3/ {/$3/ !{s/$/,Malware/}}" tmp3 > tmp4 

    # Remove data after trial end time  

    sed -e "/$3/,$ d" tmp4 > tmp5 

    # Remove percent symbol and rename to csv  

    sed 's|[%]||g' tmp5 > pi$value.csv 

done 

echo "Finished processing" 

Figure 44.  Baseline Trial Data Processing Script 
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Appendix E.   Model Code  

The code for this thesis is a modified version of Tomer Golomb’s CIoTA project [32].  

The full scope of this project includes many files that interact, including files for the agent, 

the Blockchain, network communication, and others.  In this section, the three main files 

for the model are displayed.  These represent the majority of changes to Golomb’s code. 

 

// Metrics.cpp 

// This file handles how the agent gathers data from its own node.  

// The recordMetrics function pulls in the data and then hands it  

// to the main ThesisModel class to consume 

 

#include <headers/ThesisModel/ThesisModel.h> 

#include <headers/CppUtils/LockedPointer.h> 

#include "headers/ThesisModel/Metrics.h" 

using namespace std; 

bool recordMetrics(LockedPointer<ThesisModel> *tracer, 

std::atomic<bool> *flag) { 

  // This function will run until the agent tells it to stop by  

  // changing the value of flag  

  while (!(*flag)) { 

   // Memory  

   // This section runs the free command, stores the result in a    

   // buffer, adds a null terminator, converts to a string and then  

   // a float 

   FILE *fp = popen("free -m | awk 'NR==2{printf \"%.2f%%\", $3*100/$2 

}'", "r"); 

   char buffer[8]; 

   fgets(buffer, 8, fp); 

   pclose(fp); 

   buffer[strlen(buffer) - 1] = '\0'; 

   string s(buffer); 

   float mem = stof(s); 

   memset(buffer, '\0', 8); 

 

//CPU 

   // This section runs the top command, stores the result in a buffer, 

   // adds a null terminator, converts to a string and then float 

   fp = popen("top -bn1 | grep load | awk '{printf \"%.2f%%\", $(NF-

2)}'","r"); 

   fgets(buffer, 8, fp); 

   pclose(fp); 

   buffer[strlen(buffer) - 1] = '\0'; 

   s = (buffer); 

   float cpu = stof(s); 

   memset(buffer, '\0', 8); 
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// Metrics.cpp 

 

   // Bandwidth 

   // This section calls the netstat interfaces command, stores  

   // the result in a buffer, then places the result in a size_t  

   // Variables are separate for receive (rx) and transmit (tx), they 

   // will be combined by the model 

   fp = popen("netstat --interfaces | grep eth0 | awk '{print 

$3;}'","r"); 

   fgets(buffer, 8, fp); 

   pclose(fp); 

   size_t rx; 

   sscanf(buffer,"%zu",&rx); 

   memset(buffer, '\0', 8); 

   fp = popen("netstat --interfaces | grep eth0 | awk '{print 

$7;}'","r"); 

   fgets(buffer, 8, fp); 

   pclose(fp); 

   size_t tx; 

   sscanf(buffer,"%zu",&tx); 

   memset(buffer, '\0', 8); 

 

   // Established Connections  

   // This section called the netstat command and stores the result 

   // in a buffer, then loads that buffer into a size_t variables 

   fp = popen("netstat -ntap | grep EST | wc -l","r"); 

   fgets(buffer, 8, fp); 

   pclose(fp); 

   size_t connections; 

   sscanf(buffer,"%zu",&connections); 

   memset(buffer, '\0', 8); 

 

   // Logins 

   // This section calls the last command, stores the result in a 

   // buffer, then converts it to a size_t variable and subtracts  

   // it by 2 

   fp = popen("last -s -10min | wc -l","r"); 

   fgets(buffer, 8, fp); 

   pclose(fp); 

   size_t logins; 

   sscanf(buffer,"%zu",&logins); 

   logins = logins - 2; 

   memset(buffer, '\0', 8); 

 

   // Process Count 

   // This section calls the ps command, stores the result in a 

   // buffer, then converts it to a size_t variable and subtracts  

   // it by 1 

   fp = popen("ps aux | wc -l","r"); 

   fgets(buffer, 8, fp); 

   pclose(fp); 

   size_t processes; 

   sscanf(buffer,"%zu",&processes); 

   processes -= 1; 

   memset(buffer, '\0', 8); 
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// Metrics.cpp 

 

   // The function will sleep 1 second between iterations 

   std::this_thread::sleep_until(std::chrono::system_clock::now() + 

std::chrono::seconds(1)); 

   // The data is sent to the consume function in the main ThesisModel  

   // file 

   tracer->use(&ThesisModel::consume, mem, cpu, rx, tx, connections, 

logins, processes); 

   } 

   return true; 

} 
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// ThesisModel.cpp 

// This class holds the main code for the Thesis Model 

// Critical functions defined here are the ability to compare  

// two models, the ability to consume new data, and the ability  

// to serialize a model into a buffer for inclusion into records 

 

#include <set> 

#include <fcntl.h> 

#include <unistd.h> 

#include <headers/CppUtils/Logger.h> 

#include "../../headers/ThesisModel/ThesisModel.h" 

#include "../../headers/CppUtils/Cursor.h" 

 

bool GLOBAL_ALERT_WAS_SEND = false; 

// Constructors 

ThesisModel::ThesisModel(AnomalyListener *alertListener, uint64_t 

pThreshold) : 

   _alertListener(alertListener), 

   _trainFlag(true), 

   _pThreshold(pThreshold), 

   _mem(0), 

   _cpu(0), 

   _bandwidth(0), 

   _connections(0), 

   _logins(0), 

   _processes(0), 

   _old_rx(0), 

   _old_tx(0) 

{ } 

 

ThesisModel::ThesisModel(ThesisModel const *other) : 

   _alertListener(other->_alertListener), 

   _trainFlag(other->_trainFlag == true), 

   _pThreshold(other->_pThreshold), 

   _mem(other->_mem), 

   _cpu(other->_cpu), 

   _bandwidth(other->_bandwidth), 

   _connections(other->_connections), 

   _logins(other->_logins), 

   _processes(other->_processes), 

   _old_rx(other->_old_rx), 

   _old_tx(other->_old_tx) 

{} 

 

// This function takes a model from a data buffer and pulls out the 

// variables  

void ThesisModel::deserialize(const char *buffer, size_t len) { 

   Cursor c(buffer, len); 

   c.readInto(&_mem, sizeof(float)); 

   c.readInto(&_cpu, sizeof(float)); 

   c.readInto(&_bandwidth, sizeof(size_t)); 

   c.readInto(&_connections, sizeof(size_t)); 

   c.readInto(&_logins, sizeof(size_t)); 

   c.readInto(&_processes, sizeof(size_t)); 

} 
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// ThesisModel.cpp 

 

// There are two overloaded functions to calculate score.  

// This function operates on size_t variables, and uses an  

// index to know which variables to work off. 

// val is the difference between two values of the same variable  

uint8_t ThesisModel::calcScore(size_t val, size_t index) { 

   // index 1 is bandwidth 

   if (index == 1) { 

      if (val < 50) 

        return 16; 

      else if (val < 100) 

        return 8; 

      else  

        return 0; 

   } 

   //2 is connections, 3 is logins 

   else if (index == 2 || index == 3) { 

      if (val == 0) 

        return 16; 

      else if (val == 1) 

        return 8; 

      else  

        return 0; 

   } 

   //4 is processes 

   else { 

      if (val <= 1) 

        return 16; 

      else if (val <= 3) 

        return 8;   

      else  

        return 0;   

   } 

} 

    

// There are two overloaded functions to calculate score.  

// This function operates on float variables, and handles cpu and mem 

// val is the difference between two values of the same variable 

uint8_t ThesisModel::calcScore(float f) { 

   if (f < .1) 

      return 18;  

   else if (f < .25) 

      return 9; 

   else  

      return 0; 

} 
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// ThesisModel.cpp 

 

// The compare function calculates a score for the difference between  

// two models. Since the calcScore function does not operate off  

// negative numbers, this checks which field is larger and subtracts  

// the smaller value before calling calcScore 

uint8_t ThesisModel::compare(const ThesisModel * model) { 

   uint8_t score = 0; 

   //Memory 

   if (_mem >= model->_mem) 

      score += calcScore(_mem - model->_mem); 

   else 

      score += calcScore(model->_mem - _mem); 

   //CPU 

   if (_cpu >= model->_cpu) 

      score += calcScore(_cpu - model->_cpu); 

   else 

      score += calcScore(model->_cpu - _cpu); 

   //Bandwidth 

   if (_bandwidth >= model->_bandwidth) 

      score += calcScore(_bandwidth - model->_bandwidth, 1); 

   else  

      score += calcScore(model->_bandwidth - _bandwidth, 1); 

   //Connections 

   if (_connections >= model->_connections) 

      score += calcScore(_connections - model->_connections, 2); 

   else  

      score += calcScore(model->_connections - _connections, 2); 

   //Logins 

   if (_logins >= model->_logins) 

      score += calcScore(_logins - model->_logins, 3); 

   else 

      score += calcScore(model->_logins - _logins, 3); 

   //ThesisModel 

   if (_processes >= model->_processes) 

      score += calcScore(_processes - model->_processes, 4); 

   else  

      score += calcScore(model->_processes - _processes, 4); 

   // The compare score is added to the agents logs and returned  

   LOG_TRACE("Compare score is {}",score); 

   return score; 

} 
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// ThesisModel.cpp 

 

// This function takes a model and serializes it into a memory buffer 

bool ThesisModel::serializeInto(MemBuffer *buffer) { 

   buffer->reserveMore(sizeof(float)); 

   buffer->append(&_mem, sizeof(float)); 

   buffer->reserveMore(sizeof(float)); 

   buffer->append(&_cpu, sizeof(float));   

   buffer->reserveMore(sizeof(size_t)); 

   buffer->append(&_bandwidth, sizeof(size_t)); 

   buffer->reserveMore(sizeof(size_t)); 

   buffer->append(&_connections, sizeof(size_t)); 

   buffer->reserveMore(sizeof(size_t)); 

   buffer->append(&_logins, sizeof(size_t)); 

   buffer->reserveMore(sizeof(size_t)); 

   buffer->append(&_processes, sizeof(size_t)); 

   return true; 

} 

 

// This function creates a new buffer, serializes the model into it,  

// and returns it 

MemBuffer *ThesisModel::serialize() { 

   auto* buffer = new MemBuffer(); 

   serializeInto(buffer); 

   return buffer; 

} 

 

 

// There are two overloaded functions for consuming data  

// This one gets data from the recordMetrics function, calculates  

// the bandwidth from rx and tx, then calls the second consume 

// This data comes directly from the node 

void ThesisModel::consume(float mem, float cpu, size_t rx, size_t tx, 

size_t conn, size_t logins, size_t proc) { 

   size_t band = (rx - _old_rx) + (tx - _old_tx); 

   _old_rx = rx; 

   _old_tx = tx; 

   consume(mem, cpu, band, conn, logins, proc ); 

} 

 

// There are two overloaded functions for consuming data 

// This function is the second step when data comes from the node  

// and the first step when data comes from a new block. 

void ThesisModel::consume(float mem, float cpu, size_t band, size_t 

conn, size_t logins, size_t proc) { 

   // If the agent is still training, simply accept the new data 

   if(_trainFlag.load()) { 

    _mem = mem; 

    _cpu = cpu; 

    _bandwidth = band; 

    _connections = conn; 

    _logins = logins; 

    _processes = proc; 

   } 
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 // ThesisModel.cpp 

 

   // This section calculates the score to see if an alert should be  

   // generated. This is similar to the compare function, but that 

   // function cannot be called since this new data is not in a model 

   else { 

    uint8_t score = 0; 

    //Memory 

    if (_mem >= mem) 

       score += calcScore(_mem - mem); 

    else 

       score += calcScore(mem - _mem); 

    //CPU 

    if (_cpu >= cpu) 

       score += calcScore(_cpu - cpu); 

    else 

      score += calcScore(cpu - _cpu); 

    //Bandwidth 

    if (_bandwidth >= band) 

       score += calcScore(_bandwidth - band, 1); 

    else  

       score += calcScore(band - _bandwidth, 1); 

    //Connections 

    if (_connections >= conn) 

       score += calcScore(_connections - conn, 2); 

    else  

       score += calcScore(conn - _connections, 2); 

    //Logins 

    if (_logins >= logins) 

        score += calcScore(_logins - logins, 3); 

    else 

       score += calcScore(logins - _logins, 3); 

    //Processes 

    if (_processes >= proc) 

       score += calcScore(_processes - proc, 4); 

    else  

        score += calcScore(proc - _processes, 4); 

    // Now the new data is accepted and logged, with the score 

_mem = mem; 

    _cpu = cpu; 

    _bandwidth = band; 

    _connections = conn; 

    _logins = logins; 

    _processes = proc;  

    LOG_TRACE("Consumed data {},{},{},{},{},{}", mem, cpu, band, 

conn, logins, proc); 

    LOG_TRACE("Consume-alert score is {}", score); 

 // If score is below the threshold (55), generate an alert 

    if (score < _pThreshold) { 

       if(_alertListener != nullptr){ 

              _alertListener->anomalyAlert(score); 

       } 

    } 

   } 

} 
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// ThesisModel.cpp 

 

// This function configures the anomaly listener 

void ThesisModel::setListener(AnomalyListener *alertListener) { 

   _alertListener = alertListener; 

} 

 

// This function returns whether the agent is training or testing 

bool ThesisModel::isTesting() { 

   return !(_trainFlag.load()); 

} 
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// ThesisModelUtilities.cpp 

// This program provides additional utilities to the model 

// In general, the agent has an application object which contains a  

// model utilities object, which in turn contains a model object.  

// The agent does not directly call the ThesisModel class to interact 

// with its local model, rather it goes through this class 

 

#include <utility> 

#include <cmath> 

#include "../../headers/ThesisModel/ThesisModelUtilities.h" 

 

// Constructor 

ThesisModelUtilities::ThesisModelUtilities(size_t _pConsensus, 

                            size_t _consensusSize, 

                            size_t trainInterval, 

                            ThesisModel *_empty, 

                            bool(*source)(LockedPointer<ThesisModel> *, 

std::atomic<bool> *)) : 

      _pConsensus(_pConsensus), 

      _consensusSize(_consensusSize), 

      _trainInterval(trainInterval), 

      _empty(_empty), 

      _model(new ThesisModel(_empty)), 

      _source(source), 

      _callback(nullptr), 

      _alertListener(nullptr) 

{} 

 

// Empty constructor 

ThesisModelUtilities::~ThesisModelUtilities(){ 

   ThesisModel *old = _model.update(nullptr); 

   delete old; 

} 

 

// Returns if the model is testing (false means model is training) 

bool ThesisModelUtilities::isTesting() { 

   bool res = false; 

   this->_model.use(&ThesisModel::isTesting,&res); 

   return res; 

} 
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// ThesisModelUtilities.cpp 

 

// This function takes a set of models stored in a memory buffer and  

// combines them into one model, by taking the average of each  

// variable. This resulting model is often used for comparison 

ThesisModel *ThesisModelUtilities::combine(const 

std::vector<MemBuffer*>* set) { 

   float mem_sum = 0; float cpu_sum = 0; 

   size_t band_sum = 0; size_t conn_sum = 0; 

   size_t log_sum = 0; size_t proc_sum = 0; 

   size_t count = 0; 

   for(MemBuffer* buffer : *set){ 

      auto tracer = createEmptyModel(); 

      tracer->deserialize(buffer->data(), buffer->size()); 

    mem_sum += tracer->_mem; cpu_sum += tracer->_cpu; 

    band_sum += tracer->_bandwidth; conn_sum += tracer->_connections; 

    log_sum += tracer->_logins; proc_sum += tracer->_processes; 

    count++; 

      delete tracer; 

   } 

   auto* combined = createEmptyModel(); 

   combined->consume(mem_sum / count, cpu_sum / count, ceil(band_sum / 

count), ceil(conn_sum / count), ceil(log_sum / count), ceil(proc_sum / 

count)); 

   combined->startTesting(); 

   return combined; 

} 

 

// This function compares the local model against a new model and  

// returns the compare score  

size_t ThesisModelUtilities::test(const ThesisModel *model) { 

   uint8_t score = 0; 

   if(_model.use(&ThesisModel::compare, &score, model)){ 

     return score; 

   } 

   else{ 

      return 0; 

   } 

} 

 

// This function accepts the parameter model as the new local model 

void ThesisModelUtilities::accept(ThesisModel *model) { 

   // New model’s variables are logged 

   LOG_TRACE("Accepted new block with combined model 

{},{},{},{},{},{}", model->_mem, model->_cpu, model->_bandwidth, model-

>_connections, model->_logins, model->_processes); 

   ThesisModel* old = _model.update(model); 

   if(old != nullptr) { 

      delete (old); 

   } 

} 
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// ThesisModelUtilities.cpp 

 

// Starts a thread to execute the model. This starts the training 

// phase, and then transitions to the testing phase and starts to  

// gather new data from the node every second 

void ThesisModelUtilities::execute(std::condition_variable* cv, 

std::atomic<bool> *shouldStop) { 

   LOG_TRACE("ThesisModelUtilities train for {0}", _trainInterval); 

   std::thread trainWaiter(workerDelayedThread<ThesisModelUtilities*>, 

this, _trainInterval, cv, shouldStop, 

&ThesisModelUtilities::startTesting); 

   _source(&_model, shouldStop); 

   trainWaiter.join(); 

} 

 

// This function forces a model to start testing and skip the training 

// phase. This can be useful for creating combined models used only for  

// comparison 

void ThesisModelUtilities::startTesting(ThesisModelUtilities* 

utilities){ 

   LOG_TRACE("ThesisModelUtilities - start testing") 

   if(utilities->_callback != nullptr){ 

    utilities->_callback(); 

   } 

   utilities->_model.use(&ThesisModel::startTesting); 

} 

 

// Returns the local model 

void ThesisModelUtilities::getModel(MemBuffer * buffer) { 

   bool res; 

   _model.use(&ThesisModel::serializeInto, &res, buffer); 

   if(!res){ 

      buffer->clear(); 

   } 

} 

 

// Creates empty model 

ThesisModel *ThesisModelUtilities::createEmptyModel() const { 

   return new ThesisModel(_empty); 

} 

 

// Sets alert listener 

void ThesisModelUtilities::setListener(AnomalyListener *pListener) { 

   _model.use(&ThesisModel::setListener, pListener); 

   _alertListener = pListener; 

} 
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Appendix F.   Trial Execution 

The test computer requires several terminals.  One is local, one is an SSH session to 

the alert server, and the others depend on the number of malware compromises.  The alert 

server connection is an interactive SSH session.  The directory is changed to the 

/home/pi/ciota/build folder and the following command is used to start the alert server.  

./cliServer ../default_conf.ini logs 

The default_conf.ini file contains the configuration instructions for the Blockchain.  

The third argument is the folder for the logs, in this case simply called “logs” 

At the trial start time, the agents are launched on Pis 1-12 via PSSH.  The agents start 

with a timeout of 600 seconds, or 10 minutes.  The start command for the agent is: 

pssh -h hosts -l pi -t 600 "cd ciota/build; ./agent 

../default_conf.ini" 

The first five minutes are run normally, and this time can be used to prepare the 

malware commands.  The remaining terminals are connected to the attack server via an 

SSH connection.  The telnet commands in Appendix D are entered into the terminal using 

copy and paste but are not launched.  These commands are staged until 300 seconds have 

passed since the start of the trial.  Then, the test administrator runs the command on each 

terminal, and the malware samples launch.  After launch, the alert server terminal displays 

any alerts to the screen.   

Once the PSSH command times out, the alert server is stopped.  The script in Figure 

45 is used to pull log data back from the nodes.  This script is called with the name of the 

log file (usually a timestamp) and the folder to store the results.  An example of the script 

being called is: 
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./pull_logs.sh _2018-12-12_10-11.txt main_test11 

The result of this script is a folder called main_test11 with 12 files in it, labeled 1.txt, 

2.txt, etc. 

#!/bin/bash 

# pull_logs.sh 

# This script pulls back logs from each of the 12 Pis and stores them  

# in a folder, named according to their Pi number. It requires the  

# name of the destination folder and the name of the log file, which  

# should be the time the trial was launched.  

# ./pull_logs <time> <trial_folder> 

for var in {151..162} 

do 

    scp pi@10.1.14.$var:/home/pi/ciota/build/logs/$1 logs/$2/$((var-

150)).txt 

done 

Figure 45.  Pull Logs Script  

The agent produces logs on its activity.  The logs are saved for review, and two actions 

are performed on the logs to benefit analysis.  The first step is to document all blocks during 

the trial.  Since there can be temporary forks, the logs for each Pi are checked for reported 

blocks.  An example of the resulting file is shown in Figure 46, and the process_blocks.sh 

script is shown in Figure 47.  This checks the logs for block acceptance messages, and also 

does calculations to convert timestamps into seconds from the start of the trial.  For each 

block, this script records the data for that block from each node.  Figure 46 shows the first 

block and lists from left to right: the Pi #, time in seconds, timestamp (this trial started at 

22:07:00), the block metadata, the block hash, and the combined model.  The block 

metadata includes the block number (0), the epoch time, the previous hash (left blank since 

this is the first block), the seed size (137) and seed value (192.168.0.160), the number of 

records (8).  The block hash begins with “3122” and is shortened in Figure 46 for ease of 

viewing; the actual logs list the full hash.  The combined model is the average of all eight 

records.  The example in Figure 46 does not have any forks. 
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Figure 46.  Block Logs Example 

The second piece of data from agent logs is the model data.  Every time the node calls 

the consume function to update its model with new data, a log entry is recorded.  This data 

is extracted from the full log to ease analysis.  The conseume.sh function, shown in Figure 

48 accomplishes this task.  This script is called in a similar manner to the process blocks 

script and converts timestamps to seconds from the start of trial.   
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#!/bin/bash 

# This script processes the log data gathered from the pull_logs.sh  

# script, specifically getting information about the blocks 

# The output will be stored in a blocks.txt file in the trial folder 

# The start time of the trial is required to convert the timestamps  

# into seconds from the start of the trial. This is to be called from  

# a logs folder, with subfolders for each trial 

# ./process_blocks.sh <trial_folder> <hour> <min> <sec> 

 

# If there is a previous file, overwrite it. This is typically done  

# if the wrong time was entered  

rm $1/blocks.txt 

# Trials are not typically long enough to generate more than 20 blocks 

for var in {0..20}  

do 

    echo "Block $var" >> $1/blocks.txt 

    for var2 in {1..12} 

    do 

        # For each Pi log file, this script looks for a string that a  

        # specific block number was accepted. The timestamp is pulled  

        # out and processed to convert it to seconds from start time.  

        time=`cat $1/$var2.txt | grep "Accepted block $var," | awk 

'{print $2;}' | sed 's/]/ /' | sed 's/:/ /g' | awk -v hour=$2 -v min=$3 

-v sec=$4 '{time = 60 * 60 * ($1 - hour) + 60 * ($2 - min) + ($3 - 

sec); print time;}'` 

        # Next the block metadata is recorded along with the timestamp  

        var3=`cat $1/$var2.txt | grep "Accepted block $var," | awk 

'{print $2" "$7;}'` 

        # This command records the values that were extracted from the 

        # block's models. These values are consumed by the agent and  

        # resets the agent's local model  

        var4=`cat $1/$var2.txt | grep -A12 "Accepted block $var," | 

grep "Accepted new block" | awk '{print $11;}'` 

        # Format is block #, seconds, timestamp, metadata, model values  

        # This format is for each Pi for each block  

        echo "$var2 $time $var3$var4" >> $1/blocks.txt 

    done 

    # A new line is placed between blocks  

    echo "" >> $1/blocks.txt 

done 

Figure 47.  Process Blocks Script  
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#!/bin/bash 

# consume.sh 

# This script processes logs gathered by the pull_logs.sh script.  

# Specifically, it looks at the host data gathered by the agent.  

# This is useful for identifying why an agent did or did not alert 

# The result is a file called consume<Pi #>.csv 

# ./consume.sh <trial_folder> <hour> <min> <sec> 

# For each Pi 

for count in {1..12} 

do 

    # Set the columns for the csv file 

    echo "time,mem,cpu,band,login,estconn,proccount" > 

$1/consume$count.csv 

    # This command separates the hour, minute, second, and model values  

    # These are stored in a file called temp 

    cat $1/$count.txt | grep Consumed | awk '{print $2 $7;}' | sed 

's/]/ /' | sed 's/:/ /g' > temp  

    # This command calculates the seconds from the start of the trial 

    # The result is stored in a file called temp2 

    awk -v hour=$2 -v min=$3 -v sec=$4 '{time = 60 * 60 * ($1 - hour) + 

60 * ($2 - min) + ($3 - sec); print time;}' temp > temp2 

    # This command takes the first line from temp2 and combines it with  

    # the first set of model variables from temp. This takes place for  

    # each line. Finally, any times over 600 (past ten minutes) are  

    # removed since they are beyond trial scope 

    awk '{getline stn <"temp2"; $0=stn" "$0;} 1' temp | awk '{print 

$1","$5;}' | sed '/^[6][0-9][0-9]./d' >> $1/consume$count.csv 

done 

# The temp files are removed  

rm temp 

rm temp2 

 

Figure 48.  Consume Script 
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Appendix G.   Trial Results 

Tables 15-21 show additional information about the trial results, with the exception of 

the control trials.  The results are ordered by the number of compromised nodes.  The 

specific nodes that are selected for malware are shown, as are the number of alerts 

generated by each node.   

Table 15.  Trial Results: 1 Compromised Node 

Trial 

# 

Malware 

Simulation 

# Detected 

Nodes 

Detection 

Percentage 

Compromised 

Nodes (Pi #) 

# 

Alerts 

1 1 1 100.00% 5 5 

2 1 1 100.00% 11 6 

3 1 1 100.00% 6 6 

4 2 1 100.00% 7 7 

5 2 1 100.00% 12 11 

6 2 1 100.00% 5 11 

7 3 1 100.00% 3 1 

8 3 1 100.00% 9 4 

9 3 1 100.00% 6 2 
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Table 16.  Trial Results: 3 Compromised Nodes  

Trial 

# 

Malware 

Simulation 

# Detected 

Nodes 

Detection 

Percentage 

Compromised 

Nodes (Pi #) 

# 

Alerts 

10 1 2 66.67% 

9 3 

1 7 

2 0 

11 1 3 100.00% 

11 6 

8 8 

4 2 

12 1 3 100.00% 

7 12 

9 12 

5 6 

13 2 3 100.00% 

3 2 

10 6 

9 6 

14 2 3 100.00% 

2 8 

6 8 

11 8 

15 2 3 100.00% 

3 3 

4 7 

6 7 

16 3 3 100.00% 

10 1 

11 1 

8 1 

17 3 2 66.67% 

7 4 

6 2 

8 0 

18 3 1 33.33% 

12 1 

2 0 

8 0 
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Table 17.  Trial Results: 6 Compromised Nodes 

Trial 

# 

Malware 

Simulation 

# Detected 

Nodes 

Detection 

Percentage 

Compromised 

Nodes (Pi #) 

# 

Alerts 

19 1 4 66.67% 

5 4 

6 4 

2 0 

9 4 

10 3 

3 0 

20 1 5 83.33% 

6 2 

5 8 

2 0 

10 5 

1 9 

9 5 

21 1 5 83.33% 

2 5 

9 0 

11 8 

6 1 

7 5 

5 1 

22 2 6 100.00% 

3 2 

8 6 

4 3 

2 1 

6 1 

10 4 

23 2 5 83.33% 

5 6 

12 4 

11 4 

9 2 

1 1 

4 0 
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Table 17.  Trial Results: 6 Compromised Nodes (continued) 

Trial 

# 

Malware 

Simulation 

# Detected 

Nodes 

Detection 

Percentage 

Compromised 

Nodes (Pi #) 

# 

Alerts 

24 2 4 66.67% 

10 2 

9 2 

8 1 

12 0 

3 0 

6 1 

25 3 5 83.33% 

2 0 

8 2 

5 3 

10 2 

1 1 

12 2 

26 3 4 66.67% 

12 4 

5 3 

3 0 

1 0 

8 1 

9 1 

27 3 2 33.33% 

7 0 

11 1 

6 1 

1 0 

3 0 

5 0 
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Table 18.  Trial Results: 8 Compromised Nodes  

Trial 

# 

Malware 

Simulation 

# Detected 

Nodes 

Detection 

Percentage 

Compromised 

Nodes (Pi #) 

# 

Alerts 

28 1 8 100.00% 

7 5 

5 3 

9 3 

6 1 

8 5 

12 5 

4 1 

11 5 

29 1 8 100.00% 

11 1 

1 3 

4 4 

8 2 

12 3 

3 2 

9 4 

7 1 

30 1 8 100.00% 

11 3 

9 5 

5 4 

10 4 

8 2 

2 4 

4 2 

6 4 

31 2 7 87.50% 

8 5 

5 7 

9 11 

10 1 

6 1 

2 0 

4 4 

12 1 
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Table 18.  Trial Results: 8 Compromised Nodes (continued) 

Trial 

# 

Malware 

Simulation 

# Detected 

Nodes 

Detection 

Percentage 

Compromised 

Nodes (Pi #) 

# 

Alerts 

32 2 4 50.00% 

11 0 

10 3 

2 0 

9 0 

7 0 

8 2 

5 2 

1 1 

33 2 7 87.50% 

7 4 

10 3 

6 3 

8 1 

2 1 

11 3 

3 1 

1 0 

34 3 6 75.00% 

2 1 

9 1 

11 1 

6 0 

10 0 

4 1 

3 1 

1 1 

35 3 1 12.50% 

1 0 

5 0 

11 0 

9 0 

12 0 

6 0 

7 1 

2 0 

 

 



123 

Table 18.  Trial Results: 8 Compromised Nodes (continued) 

Trial 

# 

Malware 

Simulation 

# Detected 

Nodes 

Detection 

Percentage 

Compromised 

Nodes (Pi #) 

# 

Alerts 

36 3 2 25.00% 

2 1 

3 0 

1 1 

8 0 

6 0 

10 0 

9 0 

4 0 

 

 

 

  



124 

 

Appendix H.   False Positives 

Alerts are generated when a comparison occurs between two sets of data: the local 

model (often pulled from a block) and the newly consumed data.  All false positives are 

listed in this section, with the two sets of data that are involved in the comparison.  As 

discussed in Section 5.4, the primary differences that contribute are bandwidth, CPU, and 

process count.  Table 22 lists the values involved in each false positive.   

Table 19.  False Positives 

Trial Pi Dataset Memory CPU Network Connections Logins 
Process 

Count  

4 3 

Local 

Model 
3.25 0.19 3 1 0 103 

New 

Data 
3.24 0.56 792 1 0 95 

4 3 

Local 

Model 
3.27 0.19 2 1 0 103 

New 

Data 
3.24 0.47 879 1 0 95 

4 10 

Local 

Model 
3.29 0.20 377 1 0 98 

New 

Data 
3.34 0.52 1592 1 0 103 

4 10 

Local 

Model 
3.29 0.20 377 1 0 98 

New 

Data 
3.34 0.48 1622 1 0 103 

10 6 

Local 

Model 
3.23 0.31 2 1 0 104 

New 

Data 
3.34 0.02 445 1 1 106 

12 6 

Local 

Model 
3.28 0.22 12 1 0 103 

New 

Data 
3.24 0.53 840 1 0 96 

12 11 

Local 

Model 
3.29 0.40 2 1 0 97 

New 

Data 
3.34 0.09 1058 1 0 101 
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Table 19.  False Positives (continued) 

Trial Pi Dataset Memory CPU Network Connections Logins 
Process 

Count  

12 11 

Local 

Model 
3.29 0.40 2 1 0 97 

New 

Data 
3.34 0.07 1115 1 0 101 

13 6 

Local 

Model 
3.23 0.07 3 1 0 97 

New 

Data 
3.34 0.43 994 1 0 99 

14 2 

Local 

Model 
3.25 0.40 2 1 0 104 

New 

Data 
3.13 0.12 470 1 0 101 

17 7 

Local 

Model 
3.24 0.20 88 1 0 103 

New 

Data 
3.34 0.09 755 1 0 107 

19 1 

Local 

Model 
3.30 0.28 3 1 0 104 

New 

Data 
3.13 0.12 839 1 0 96 

20 5 

Local 

Model 
3.28 0.24 3 1 0 104 

New 

Data 
3.34 0.50 600 1 1 106 

20 6 

Local 

Model 
3.30 0.22 12 1 0 104 

New 

Data 
3.34 0.48 770 1 0 99 

20 7 

Local 

Model 
3.30 0.22 12 1 0 104 

New 

Data 
3.34 0.52 758 1 0 97 

20 3 

Local 

Model 
3.30 0.47 2 1 0 99 

New 

Data 
3.34 0.02 1459 1 0 95 

21 2 

Local 

Model 
3.24 0.25 2 1 0 104 

New 

Data 
3.13 0.45 385 1 1 102 
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Table 19.  False Positives (continued) 

Trial Pi Dataset Memory CPU Network Connections Logins 
Process 

Count  

21 5 

Local 

Model 
3.24 0.24 3 1 0 103 

New 

Data 
3.34 0.40 522 1 1 105 

21 6 

Local 

Model 
3.24 0.24 3 1 0 103 

New 

Data 
3.34 0.07 515 1 1 105 

23 3 

Local 

Model 
3.26 0.25 2 1 0 103 

New 

Data 
3.13 0.39 564 1 1 101 

23 10 

Local 

Model 
3.21 0.26 2 1 0 103 

New 

Data 
3.34 0.37 464 1 1 107 

23 3 

Local 

Model 
3.27 0.23 99 1 0 102 

New 

Data 
3.13 0.35 964 1 0 97 

23 10 

Local 

Model 
3.25 0.24 2 1 0 103 

New 

Data 
3.34 0.36 702 1 1 107 

23 10 

Local 

Model 
3.34 0.36 702 1 1 107 

New 

Data 
3.24 0.15 191 1 0 97 

24 12 

Local 

Model 
3.23 0.18 3 1 0 103 

New 

Data 
3.24 0.50 453 1 1 105 

24 2 

Local 

Model 
3.28 0.19 3 1 0 103 

New 

Data 
3.13 0.29 826 1 0 93 

24 2 

Local 

Model 
3.13 0.29 826 1 0 93 

New 

Data 
3.24 0.15 105 1 0 98 
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Table 19.  False Positives (continued) 

Trial Pi Dataset Memory CPU Network Connections Logins 
Process 

Count  

24 4 

Local 

Model 
3.28 0.20 118 1 0 99 

New 

Data 
3.13 0.48 967 1 0 97 

26 5 

Local 

Model 
3.21 0.31 2 1 0 103 

New 

Data 
3.34 0.04 365 1 1 104 

26 10 

Local 

Model 
3.21 0.31 2 1 0 103 

New 

Data 
3.34 0.42 410 1 1 105 

26 8 

Local 

Model 
3.21 0.31 2 1 0 103 

New 

Data 
3.24 0.89 413 1 1 105 

26 9 

Local 

Model 
3.24 0.24 2 1 0 103 

New 

Data 
3.24 0.50 343 1 0 107 

26 8 

Local 

Model 
3.21 0.30 2 1 0 103 

New 

Data 
3.34 0.43 530 1 1 105 

26 4 

Local 

Model 
3.28 0.24 11 1 0 103 

New 

Data 
3.24 0.53 866 1 0 96 

28 2 

Local 

Model 
3.31 0.73 2 1 0 99 

New 

Data 
3.24 0.25 1518 1 0 95 

30 6 

Local 

Model 
3.30 0.24 264 1 0 104 

New 

Data 
3.34 0.52 829 1 0 97 

30 3 

Local 

Model 
3.36 0.77 2 1 0 99 

New 

Data 
3.13 0.18 1233 1 0 97 
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Table 19.  False Positives (continued) 

Trial Pi Dataset Memory CPU Network Connections Logins 
Process 

Count  

30 1 

Local 

Model 
3.30 0.89 3 1 0 99 

New 

Data 
3.13 0.20 1556 0 0 98 

30 3 

Local 

Model 
3.30 0.88 3 1 0 99 

New 

Data 
3.13 0.24 1518 0 0 96 

31 3 

Local 

Model 
3.31 0.27 3 1 0 100 

New 

Data 
3.13 0.12 5396 1 0 96 

32 4 

Local 

Model 
3.41 0.23 2 1 0 102 

New 

Data 
3.13 0.13 1237 1 0 98 

33 7 

Local 

Model 
3.24 0.26 2 1 0 102 

New 

Data 
3.34 0.10 854 1 0 97 

35 6 

Local 

Model 
3.20 0.25 2 1 0 104 

New 

Data 
3.34 0.55 495 1 1 104 

36 3 

Local 

Model 
3.30 0.29 76 1 0 102 

New 

Data 
3.24 0.04 865 1 0 96 
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